In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumul...In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumulation patterns of this area are not fully understood,posing challenges for further exploration.Our analysis of geological conditions indicates that the Ordovician Majiagou Formation in this area hosts two gas plays:one found in weathering crusts and the other found in interior of the formation.We investigated various typical gas reservoirs in the area,focusing on differentiating the geological conditions and factors controlling gas accumulation in the weathering-crust and interior gas reservoirs.The results suggest three primary gas accumulation patterns in the Majiagou Formation in the Fuxian area:(1)upper gas accumulation in weathering crusts,present in the high parts of landforms such as residual paleo-hills or buried paleo-platform(Pattern I);(2)the stereoscopic pattern with gas accumulation in both weathering crusts and strata interior,arising in high parts of landforms such as residual paleo-hills or buried paleo-platforms(Pattern II);(3)lower gas accumulation in strata interior,occurring in the upper reaches and on both sides of paleo-trenches(Pattern III).This study will serve as a geological basis for future exploration deployment in the Fuxian area.展开更多
Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhous...Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.展开更多
A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,G...A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.展开更多
The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because ...The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because of its strong reservoir heterogeneity and complex reservoir-controlling factors.Based on a large volume of core,thin section,logging,seismic,and geochemical data and numerous geological analyses,the reservoir-forming conditions and modes were systematically analyzed to guide the exploration and achieve important breakthroughs in the Yangshuiwu and Wen an slope buried hills.The study revealed that three sets of source rocks of the third and fourth members of the Shahejie Formation from the Paleogene and Carboniferous-Permian were developed in the Jizhong depression,providing sufficient material basis for the formation of buried hill oil and gas reservoirs.The reservoir control mechanism involving the three major factors of“cloud-karst-fault”was clarified,and karst cave,fracture fissure-pore,and cloud pore type reservoir models were established,thereby expanding the exploration potential.Controlled by the superposition of multi-stage tectonic processes during the Indosinian,Yanshanian,and Himalayan,two genetic buried hill trap types of uplift-depression and depression-uplift were formed.Based on the analysis of reservoir-forming factors of the Ordovician buried hill,three buried hill oil and gas reservoir-forming models were identified:low-level tectonic-lithologic composite quasi-layered buried hill,medium-level paleo-storage paleo-block buried hill,and high-level paleo-storage new-block buried hill.Comprehensive evaluations indicate that the reservoir-forming conditions of the low-level tectonic-lithologic composite quasi-layered buried hill in the northern portion of the Jizhong depression are the most favorable and that the Sicundian and Xinzhen buried hills are favorable areas for future exploration.展开更多
The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through ...The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.展开更多
Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore st...Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore structures and gas content of the samples by using experimental techniques such as high-resolution field emission scanning electron microscopy (FESEM), mercury injection capillary pressure (MICP), low-temperature nitrogen adsorption (LTNA), CO_(2) adsorption, and focused ion beam scanning electron microscopy (FIB-SEM). The results show that the shale has 10 different lithofacies, typical mixed sedimentary characteristics, and poorly developed pores. The reservoir space mainly consists of intercrystalline pores, dissolution pores, intergranular pores, and micro-fissures, with organic pores occasionally visible. The pore size is mostly within 0.4–250 nm range but dominated by micropores and mesopores less than 20 nm, with pore numbers peaking at pore sizes of 0.5 nm, 0.6 nm, 0.82 nm, 3 nm, and 10 nm, respectively. The pores are poorly connected and macropores are rarely seen, which may explain the low porosity and low permeability of the samples. Samples with high content of organic matter and felsic minerals are potential reservoirs for oil and gas with their favorable physical properties and high connectivity. The pores less than 5 nm contribute significantly to the specific surface area and serve as important storage space for adsorbed gas.展开更多
Since 1985, samples with a total weight of more than 14,000 kg, mainly from three key sections in western and northwestern Hunan, South China, have been processed for conodonts. In strata older than the late Late Camb...Since 1985, samples with a total weight of more than 14,000 kg, mainly from three key sections in western and northwestern Hunan, South China, have been processed for conodonts. In strata older than the late Late Cambrian paraconodonts have proved useful for stratigraphic subdivision and correlation. Thirteen conodont zones are proposed in the Middle Cambrian through lowermost Ordovician. The correlation between these zones and those of North China, western U. S.A., western Newfoundland, Canada, and Iran is discussed. In ascending order, these 13 zones are as follows: The Gapparodus bisulcatus-Westergaardodina brevidens Zone, Shandongodus priscus-Hunanognathus tricuspidatus Zone, Westergaardodina quadrata Zone, Westergaardodina matsushitai-W. grandidens Zone, Westergaardodina lui-W. am Zone, Westergaardodina cf. calix-Prooneotodus rotundatus Zone, Proconodontus tenuiserratus Zone, Proconodontus Zone, Eoconodontus Zone, Cordylodus proavus Zone, Cordylodus intermedius Zone, Cordylodus lindstromi Zone, and Cordylodus angulatus Zone (lower part). The Westergaardodina lui-W. ani and Westergaardodina cf. calix-Prooneotodus rotundatus Zones replace the Westergaardodina proligula and Westergaardodina cf. behrae-Prooneotodus rotundatus Zones, respectively, in the lowermost Upper Cambrian. Two new species (Westergaardodina Iui and Westergaardodina ani) and one conditionally identified species (Westergaardodina cf. calix) are described.展开更多
The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences...The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences of the Great Ordovician Biodiversification Event (GOBE). The pre-GOBE sedimentary systems deposited in Tremadoc display widespread microbialite and flat-pebble conglomerates, and a less extent of bioturbation. Through the transitional period of early Floian, the sedimentary systems in the rest of the Early and Mid- Ordovician change to GOBE type and are characterized by intensive bioturbation and vanishing flat-pebble conglomerates and subtidal microbial sediments. The irreversible changes in sedimentary systems in North China are linked to the GOBE, which conduced the increase in infaunal tiering, the expansion of infaunal ecospace, and the appearance of new burrowers related to the development of the Paleozoic Evolutionary Fauna during the Ordovician biodiversification. Thus, changes in sedimentary systems during the pivotal period of the GOBE were consequences of a steep diversification of benthic faunas rather than the GOBE's environmental background.展开更多
Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ord...Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration.展开更多
With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-so...With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.展开更多
The Tazhong Uplift of the late Ordovician is a drowned rimmed carbonate platform. The carbonate rock of the late Ordovician Lianglitage Formation in the northern slope of the Tazhong region is one of the significant p...The Tazhong Uplift of the late Ordovician is a drowned rimmed carbonate platform. The carbonate rock of the late Ordovician Lianglitage Formation in the northern slope of the Tazhong region is one of the significant petroliferous intervals. Based on petrofacies, depositional cycles, natural gammaray spectrometry and carbon/oxygen isotope data from the Lianglitage Formation, one 2nd-order, three 3rd-order and several 4th-order sequences have been recognized, and the late Ordovician relative sealevel fluctuation curve has been established. The sequences O3 1-1 and O3 1-2 on the platform are composed of highstand and transgressive systems tracts, but lack the lowstand systems tract. The sequence O3 1-3 is a drowning sequence. The sequence O3 1-1 overlapped the eroded slope and pinched out to the northwest and landward. The highstand systems tract in the sequence O3 1-2 consists of low-angle sigmoid and high-angle shingled progradation configuration. Major sedimentary facies of the Lianglitage Formation include reef and shoal in the platform margin and lagoon, which can be subdivided into coral-sponge-stromatoporoid reef complex, sand shoal, lime mud mound, and intershoal sea. Reefs, sand shoals and their complex are potential reservoir facies. The reefs and sand shoals in the sequence O3 1-1 developed in the upper of its highstand systems tract. In the sequence O3 1-2, the highstand systems tract with an internal prograding configuration is a response to the lateral shifting of the complex of reef and sand shoal. The transgressive systems tract, in particular the sand shoals, developed widely on the slope of the platform margin and interior. The reefs in the sequence O3 1-3 migrated towards high positions and formed retrograding reefs in the western platform and low relief in the platform interior. Basinward lateral migration of the reefs and pure carbonate rock both characterize highstand systems tract and show that the rise of the relative sea-level was very slow. Shingled prograding stacking pattern of the 4th-order sequences and reefs grow horizontally, which represents the late stage of highstand systems tract and implies relative sealevel stillstand. Reefs migrating towards high land and impure carbonate rock both indicate transgressive systems tract and suggest that the relative sea-level rose fast. Erosional truncation and epidiagenetic karstification represent a falling relative sea-level. The relative sea-level fluctuation and antecedent palaeotopography control the development and distribution of reef complexes and unconformity karst zones. Currently, the composite zone of epidiagenetic karstic intervals and high-energy complexes of reefs and sand shoals with prograding configuration is an important oil and gas reservoir in the northern slope of the Tazhong carbonate platform.展开更多
The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in explorati...The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in exploration of Ordovician. In over 50 years of exploration, oil and gas totaling over 1.6 billion tonnes oil-equivalent has been discovered in the Ordovician carbonate formation. The accumulation mechanisms and distribution rules are quite complicated because of the burial depth more than 3,500 m, multi-source, and multi-stage accumulation, adjustment, reconstruction and re-enrichment in Ordovician. In this paper, we summarized four major advances in the hydrocarbon accumulation mechanisms of Ordovician carbonate reservoirs. First, oil came from Cambrian and Ordovician source rocks separately and as a mixture, while natural gas was mainly cracked gas generated from the Cambrian-Lower Ordovician crude oil. Second, most hydrocarbon migrated along unconformities and faults, with different directions in different regions. Third, hydrocarbon migration and accumulation had four periods: Caledonian, early Hercynian, late Hercynian and Himalayan, and the latter two were the most important for oil and gas exploration. Fourth, hydrocarbon accumulation and evolution can be generally divided into four stages: Caledonian (the period of hydrocarbon accumulation), early Hercynian (the period of destruction), late Hercynian (the period of hydrocarbon reconstruction and re-accumulation), and Himalayan (the period of hydrocarbon adjustment and re-accumulation). Source rocks (S), combinations of reservoir-seal (C), paleo-uplifts (M), structure balance belt (B) matched in the same time (T) control the hydrocarbon accumulation and distribution in the Ordovician formations. Reservoir adjustment and reconstruction can be classified into two modes of physical adjustment and variation of chemical compositions and five mechanisms. These mechanisms are occurrence displacement, biodegradation, multi-source mixing, high-temperature cracking and late gas invasion. Late hydrocarbon accumulation effects controlled the distribution of current hydrocarbon. The T-BCMS model is a basic geological model to help understanding the control of reservoirs. At present, the main problems of hydrocarbon accumulation focus on two aspects, dynamic mechanisms of hydrocarbon accumulation and the quantitative models of oil-bearing in traps, which need further systemic research.展开更多
The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the ...The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the research area.The reefs have different thicknesses ranging from 0.5 m to 11.5 m and lengths varying from 1 m to 130 m.The reef-building organisms include Archaeoscyphia, Recepthaculitids,Batostoma,Cyanobacteria and Pulchrilamina.Through the research of characteristics of the reef-bearing strata of the Early Ordovician in the Yichang area,four sorts of biofacies are recognized,which are(1) shelly biofacies:containing Tritoechia-Pelmatozans community and Tritoechia-Pomatotrema community;(2) reef biofacies:including the Batostoma,Calathium-Archaeoscyphia, Pelmatozoa-Batostoma,Archeoscyphia and Calathium-Cyanobacteria communities; (3) standing-water biofacies:including the Acanthograptus-Dendrogptus and Yichangopora communities;and(4) allochthonous biofacies:containing Nanorthis-Psilocephlina taphocoense community.The analysis of sea-level changes indicates that there are four cycles of sea-level changes during the period when reef-bearing strata were formed in this area,and the development of reefs is obviously controlled by the velocity of sea-level changes and the growth of accommodation space.The authors hold that reefs were mostly formed in the high sea level periods.Because of the development of several subordinate cycles during the sea-level rising,the reefs are characterized by great quantity, wide distribution,thin thickness and small scale,which are similar to that of Juassic reefs in northern Tibet.The research on the evolution of communities shows that succession and replacement are the main forms.The former is favorable to the development of reefs and the latter indicates the disappearance of reefs.展开更多
Chitinozoans collected from upper Tremadocian to lower Floian strata of Chenjiahe section, Yichang, western Hubei, China comprise six species belonging respectively to the genera Euconochitina including a new species,...Chitinozoans collected from upper Tremadocian to lower Floian strata of Chenjiahe section, Yichang, western Hubei, China comprise six species belonging respectively to the genera Euconochitina including a new species, Euconochitina fenxiangensis, Lagenochitina and Bursachitina, together with Desmochitina sp. and Eremochitina sp. The chitinozoan succession across the interval is correlated with relevant conodont and chitinozoan biozones and two new regional chitinozoan biozones, the Lagenochitina destombesi Biozone and the Euconochitina symmetrica Biozone are proposed based on their stratigraphic ranges in the Fenxiang to Honghuayuan formations in the Chenjiahe section.展开更多
Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were devel...Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were developed in the Tarim Basin. But research on fluctuation character- istics and global correlation of δ13Ccarb is still weak. Based on conodont biostratigraphy and whole-rock δ13Ccarb data in the Tahe oil-gas field of the northern Tarim Basin, the global correlation and genesis of positive carbon isotope excursions in the Darriwilian--Early Katian was exam- ined. Three positive excursions were identified in the Tahe oil-gas field including the middle Darriwilian carbon iso- tope excursion (MDICE), the Guttenberg carbon isotope excursion (GICE), and a positive excursion within the Pygodus anserinus conodont zone which is named the Early Sandbian carbon isotope excursion (ESICE) in this paper. Furthermore, these positive excursions had no direct relation with sea level fluctuations. MDICE and GICE could be globally correlated. The Middle-Upper Ordovi- cian Saergan Formation source rocks of the Kalpin outcrops were in accordance with the geological time of MDICE and ESICE. GICE had close relationship with the source rock of the Lianglitag Formation in the basin.Massive organic carbon burial was an important factor controlling the genesis of these positive excursions.展开更多
The base of the Middle Ordovician (i.e. Dapingian Stage) has been defined at the first appearance datum (FAD) of conodont Baltoniodus? triangularis at Huanghuachang, Yichang, China,but the precise correlation of ...The base of the Middle Ordovician (i.e. Dapingian Stage) has been defined at the first appearance datum (FAD) of conodont Baltoniodus? triangularis at Huanghuachang, Yichang, China,but the precise correlation of the boundary to regions of other facies remain to be resolved. Herein we review the biostratigraphy and chemostratigraphy of the Huanghuachang Global Standard Stratotype-Section and Point (GSSP) section, and present our latest stratigraphic work on the nearby Chenjiahe s ection in Yichang, and the Hengtang Quarry section, Jiangshan, Zhejiang, which is regarded as representative of slope facies. The conodont and graptolite biostratigraphy as well as chemostratigraphy of the Chenjiahe section indicate that the base of the Middle Ordovician also falls within the graptolite Azygograptus suecicus Zone, and coincides with a high or maximum δ13C value within a minor positive carbon isotope excursion, suggesting that the base boundary can be readily recognized across the entire Yangtze Gorges area. The integrated graptolite and conodont biostratigraphy and chemostratigraphy of the Hengtang section, Jiangshan, indicates that the basal boundary probably falls within the graptolite lsograptus caduceus imitatus Zone that overlies the Azygograptus suecicus Zone, and coincides with a remarkable drop of δ13C. This difference indicates that a multi-disciplinary approach is critical to identify the base boundary in those regions where the Baltoniodus ? triangularis is absent.展开更多
The combination patterns and depositional characteristics of the carbonate banks are investigated based on outcrop sections, thin sections, and carbon isotopes of Ordovician in the western Tarim Basin, China. Four car...The combination patterns and depositional characteristics of the carbonate banks are investigated based on outcrop sections, thin sections, and carbon isotopes of Ordovician in the western Tarim Basin, China. Four carbonate bank combination patterns are deposited in the Ordovician, western Tarim Basin, including: Reef-Bank Complex (RBC), Algae-Reef-Bank Interbed (ARBI), Thick-Layer Cake Aggradation Bank (TLCAB), and Thin-Layer Cake Retrogradation Bank (TLCRB). All combination patterns show clear periods vertically. The RBC is mainly composed of reefs and bioclastic banks, and the dimension of the RBC depends on the scale of the reefs. Bioclastic banks deposits surround the reefs. The range of the ARBI is determined by the scale of algae-reefs, algae peloid dolomite microfacies and algal dolomite microfacies deposit alternating vertically. TLCAB and TLCRB are deposited as layer-cakes stacking in cycles and extending widely with cross bedding developed. The grains of TLCAB and TLCRB are diverse and multi-source. With the impacting of relative sea level change, biological development and geomorphology, the ARBI, TLCAB or TLCRB, RBC are successively developed from the Lower Ordovician Penglaiba Formation to the Middle Ordovician Yijianfang Formation. The depositional environment analysis of Ordovician indicates that the RBC and ARBI can form effective oil and gas reservoirs, and the TLCAB and TLCRB have the potential to form the huge scale oil and gas reservoirs and to be the crucial targets of exploration for the Ordovician carbonate banks in the future.展开更多
This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water ...This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water over 40 years within a typical northern mountainous coal mine named Fengfeng Mine was studied by using Piper diagram, Gibbs scheme, ions correlation and Principal component analysis(PCA) methods. Results showed that, except for HCO3^-, the ions of Ca^2+, Mg^2+, SO4^2-,Na^++K^+, Cl^- and total dissolution solids(TDS) values all increased by years as mining continues. Different hydro-geochemical characteristics in different periods can reflect different water-rock interactions.Accordingly, sulfates dissolution gradually took place of carbonates in water-rock interaction. Especially,OL water-rock interactions in different periods were all affected by rock weathering and evaporationconcentration together. At last, evaporationconcentration co-effect dominated the hydrogeochemistry evolution slowly, along with significant cations exchange over years.展开更多
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. ...Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine-coarse euhedral floating dolomites (MD2); (3) fine-coarse euhedral dolomites (MD3); and (4) medium-very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰-0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165-0.709764); and high homogenization temperature (Th) values (98°C-225°C) and salinities (6 wt%-24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.展开更多
Early Ordovician A-type granites in the northeastern(NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region.This research presents new zircon U–Pb ages and wholerock geoch...Early Ordovician A-type granites in the northeastern(NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region.This research presents new zircon U–Pb ages and wholerock geochemical data for the Early Ordovician granites in the NE Songnen Block. Zircon U–Pb dating indicates that the granite in the Cuibei, Hongxing, and Meixi areas in the NE Songnen Block formed in the Early Ordovician with ages of 471–479 Ma. The granites show geochemical characteristics of high SiO2 and K2 O compositions and low FeOT, MgO, CaO, and P2 O5 compositions. They belong to a high K calc-alkaline series and display a weak peraluminous featurPe with A/CNK values of 0.98–1.14. The rocks have aREE composition of 249.98–423.94 ppm,and are enriched in LREE with(La/Yb)Nvalues of2.87–9.87, and display obvious Eu anomalies(d Eu =0.01–0.29). Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm,and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr +Y + Nb+Ce values(324–795 ppm) and Ga/Al ratios consistent with A-type granites. Based on particular geochemical features, such as high Rb/Nb(7.98–24.19) and Y/Nb(1.07–3.43), the studied A-type granites can be further classified as an A2-type subgroup. This research indicates that the Early Ordovician A-type granites were formed by the partial melting of ancient crust in an extensional setting. Lower Sr/Y and(Ho/Yb)Nratios indicate that plagioclase and amphibole are residual in the source, and garnet is absent, implying that the magma was generated at low levels of pressure. By contrast, the contemporaneous granites in the SE Xing'an Block suggest a subduction-related tectonic setting, and its adakitic property indicates a thickened continental crust.We suggest that the Paleo-Asian Ocean plate between the Xing'an and Songnen blocks subducted northward during the Early Ordovician. Meanwhile, the NE Songnen Block was exposed to a passive continental margin tectonic setting.展开更多
基金supported the National Natural Science Foundation of China(Nos.:U19B6003,U20B6001)the Class A Strategic Pilot Science and Technology Program of the Chinese Academy of Sciences(No.:XDA14000000)a project entitled Oil and Gas Enrichment Rules and Favorable Target Selection in the Iran-Iraq region initiated by the Sinopec Science and Technology Department.
文摘In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumulation patterns of this area are not fully understood,posing challenges for further exploration.Our analysis of geological conditions indicates that the Ordovician Majiagou Formation in this area hosts two gas plays:one found in weathering crusts and the other found in interior of the formation.We investigated various typical gas reservoirs in the area,focusing on differentiating the geological conditions and factors controlling gas accumulation in the weathering-crust and interior gas reservoirs.The results suggest three primary gas accumulation patterns in the Majiagou Formation in the Fuxian area:(1)upper gas accumulation in weathering crusts,present in the high parts of landforms such as residual paleo-hills or buried paleo-platform(Pattern I);(2)the stereoscopic pattern with gas accumulation in both weathering crusts and strata interior,arising in high parts of landforms such as residual paleo-hills or buried paleo-platforms(Pattern II);(3)lower gas accumulation in strata interior,occurring in the upper reaches and on both sides of paleo-trenches(Pattern III).This study will serve as a geological basis for future exploration deployment in the Fuxian area.
基金This study was financially supported by the National Natural Science Foundation of China(U19B6003)Frontier Project of Chinese Academy of Sciences(XDA14010201)National Key Natural Science Foundation of China(91755211).
文摘Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.
基金funded by National Natural Science Foundation of China(Grant Nos.42102130,41972011)Natural Science Foundation of Jiangsu Province(Grant No.BK20191101)+2 种基金Chinese Academy of Sciences(Grant No.XDB26000000)China Scholarship Council(Grant No.202004910207)State Key Laboratory of Palaeobiology and Stratigraphy。
文摘A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.
基金major science and technology project of PetroChina“Research and application of key technologies for sustainable,effective and stable production exploration and development of North China Oilfield(2017e-15)”。
文摘The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because of its strong reservoir heterogeneity and complex reservoir-controlling factors.Based on a large volume of core,thin section,logging,seismic,and geochemical data and numerous geological analyses,the reservoir-forming conditions and modes were systematically analyzed to guide the exploration and achieve important breakthroughs in the Yangshuiwu and Wen an slope buried hills.The study revealed that three sets of source rocks of the third and fourth members of the Shahejie Formation from the Paleogene and Carboniferous-Permian were developed in the Jizhong depression,providing sufficient material basis for the formation of buried hill oil and gas reservoirs.The reservoir control mechanism involving the three major factors of“cloud-karst-fault”was clarified,and karst cave,fracture fissure-pore,and cloud pore type reservoir models were established,thereby expanding the exploration potential.Controlled by the superposition of multi-stage tectonic processes during the Indosinian,Yanshanian,and Himalayan,two genetic buried hill trap types of uplift-depression and depression-uplift were formed.Based on the analysis of reservoir-forming factors of the Ordovician buried hill,three buried hill oil and gas reservoir-forming models were identified:low-level tectonic-lithologic composite quasi-layered buried hill,medium-level paleo-storage paleo-block buried hill,and high-level paleo-storage new-block buried hill.Comprehensive evaluations indicate that the reservoir-forming conditions of the low-level tectonic-lithologic composite quasi-layered buried hill in the northern portion of the Jizhong depression are the most favorable and that the Sicundian and Xinzhen buried hills are favorable areas for future exploration.
基金Supported by the PetroChina Science and Technology Project(2022KT1205).
文摘The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.
基金funded by a National Science and Technology Major Project(No.2016ZX05007)Chinese Academy of Sciences(CAS)Strategic Leading Science&Technology Program(No.XDA14010000)CNPC's"Fourteenth Five-Year Plan"forward-looking basic strategic major scientific and technological project(No.2021DJ3102).
文摘Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore structures and gas content of the samples by using experimental techniques such as high-resolution field emission scanning electron microscopy (FESEM), mercury injection capillary pressure (MICP), low-temperature nitrogen adsorption (LTNA), CO_(2) adsorption, and focused ion beam scanning electron microscopy (FIB-SEM). The results show that the shale has 10 different lithofacies, typical mixed sedimentary characteristics, and poorly developed pores. The reservoir space mainly consists of intercrystalline pores, dissolution pores, intergranular pores, and micro-fissures, with organic pores occasionally visible. The pore size is mostly within 0.4–250 nm range but dominated by micropores and mesopores less than 20 nm, with pore numbers peaking at pore sizes of 0.5 nm, 0.6 nm, 0.82 nm, 3 nm, and 10 nm, respectively. The pores are poorly connected and macropores are rarely seen, which may explain the low porosity and low permeability of the samples. Samples with high content of organic matter and felsic minerals are potential reservoirs for oil and gas with their favorable physical properties and high connectivity. The pores less than 5 nm contribute significantly to the specific surface area and serve as important storage space for adsorbed gas.
基金This study was supported by the National Natural Science Foundation of China(Grants 4037200140072007+3 种基金49772083 to Dong Xiping)by the Laboratory of Paleobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences(Grant 023106 to Dong Xiping)by the Research Fund for Doctoral Program of High Education(Grant 2000000127 to Dong Xiping)by a travel grant from the Ohio State University(to Stig M.Bergstrom).
文摘Since 1985, samples with a total weight of more than 14,000 kg, mainly from three key sections in western and northwestern Hunan, South China, have been processed for conodonts. In strata older than the late Late Cambrian paraconodonts have proved useful for stratigraphic subdivision and correlation. Thirteen conodont zones are proposed in the Middle Cambrian through lowermost Ordovician. The correlation between these zones and those of North China, western U. S.A., western Newfoundland, Canada, and Iran is discussed. In ascending order, these 13 zones are as follows: The Gapparodus bisulcatus-Westergaardodina brevidens Zone, Shandongodus priscus-Hunanognathus tricuspidatus Zone, Westergaardodina quadrata Zone, Westergaardodina matsushitai-W. grandidens Zone, Westergaardodina lui-W. am Zone, Westergaardodina cf. calix-Prooneotodus rotundatus Zone, Proconodontus tenuiserratus Zone, Proconodontus Zone, Eoconodontus Zone, Cordylodus proavus Zone, Cordylodus intermedius Zone, Cordylodus lindstromi Zone, and Cordylodus angulatus Zone (lower part). The Westergaardodina lui-W. ani and Westergaardodina cf. calix-Prooneotodus rotundatus Zones replace the Westergaardodina proligula and Westergaardodina cf. behrae-Prooneotodus rotundatus Zones, respectively, in the lowermost Upper Cambrian. Two new species (Westergaardodina Iui and Westergaardodina ani) and one conditionally identified species (Westergaardodina cf. calix) are described.
基金support for thisstudy was provided by the National Natural ScienceFoundation of China(no.:40472008,40825006)the Ministry of Science and Technology of China(no.:2006CB806402)the State Key Laboratory ofPalaeobiology and Stratigraphy(no.:LPS20081103)
文摘The temporal distribution of the diagnostic biofabrics in the Lower and Middle Ordovician in North China distinctly illustrates that the sedimentary systems on the paleoplate have been changed markedly as consequences of the Great Ordovician Biodiversification Event (GOBE). The pre-GOBE sedimentary systems deposited in Tremadoc display widespread microbialite and flat-pebble conglomerates, and a less extent of bioturbation. Through the transitional period of early Floian, the sedimentary systems in the rest of the Early and Mid- Ordovician change to GOBE type and are characterized by intensive bioturbation and vanishing flat-pebble conglomerates and subtidal microbial sediments. The irreversible changes in sedimentary systems in North China are linked to the GOBE, which conduced the increase in infaunal tiering, the expansion of infaunal ecospace, and the appearance of new burrowers related to the development of the Paleozoic Evolutionary Fauna during the Ordovician biodiversification. Thus, changes in sedimentary systems during the pivotal period of the GOBE were consequences of a steep diversification of benthic faunas rather than the GOBE's environmental background.
文摘Based on comprehensive analysis of reservoir-forming conditions, the diversity of reservoir and the difference of multistage hydrocarbon charge are the key factors for the carbonate hydrocarbon accumulation of the Ordovician in the Tarim Basin. Undergone four major deposition-tectonic cycles, the Ordovician carbonate formed a stable structural framework with huge uplifts, in which are developed reservoirs of the reef-bank type and unconformity type, and resulted in multistage hydrocarbon charge and accumulation during the Caledonian, Late Hercynian and Late Himalayan. With low matrix porosity and permeability of the Ordovician carbonate, the secondary solution pores and caverns serve as the main reservoir space. The polyphase tectonic movements formed unconformity reservoirs widely distributed around the paleo-uplifts; and the reef-bank reservoir is controlled by two kinds of sedimentary facies belts, namely the steep slope and gentle slope. The unconventional carbonate pool is characterized by extensive distribution, no obvious edge water or bottom water, complicated oil/gas/water relations and severe heterogeneity controlled by reservoirs. The low porosity and low permeability reservoir together with multi-period hydrocarbon accumulation resulted in the difference and complex of the distribution and production of oil/gas/water. The distribution of hydrocarbon is controlled by the temporal-spatial relation between revolution of source rocks and paleo-uplifts. The heterogenetic carbonate reservoir and late-stage gas charge are the main factors making the oil/ gas phase complicated. The slope areas of the paleo-uplifts formed in the Paleozoic are the main carbonate exploration directions based on comprehensive evaluation. The Ordovician of the northern slope of the Tazhong uplift, Lunnan and its periphery areas are practical exploration fields. The Yengimahalla-Hanikatam and Markit slopes are the important replacement targets for carbonate exploration. Gucheng, Tadong, the deep layers of Cambrian dolomite in the Lunnan and Tazhong-Bachu areas are favorable directions for research and risk exploration.
文摘With a comprehensive study on the petrology, geology and geochemistry of some Ordovician granule limestone samples in the Tahe Oiifieid of the Tarim Basin, two stages of burial dissolution were put forward as an in-source dissolution and out-source dissolution based on macro-microcosmic petrology and geochemistry features. The main differences in the two stages are in the origin and moving pass of acid fluids. Geochemical evidence indicates that burial dissolution fluids might be ingredients of organic acids, CO2 and H2S associated with organic matter maturation and hydrocarbon decomposition, and the in-source fluid came from organic matter in the granule limestone itself, but the out-source was mainly from other argillaceous carbonate rocks far away. So, the forming of a burial dissolution reservoir resulted from both in-source and the out-source dissolutions. The granule limestone firstly formed unattached pinholes under in-source dissolution in situ, and afterwards suffered wider dissolution with out-source fluids moving along unconformities, seams, faults and associate fissures. The second stage was much more important, and the mineral composition in the stratum and heat convection of the fluid were also important in forming favorable reservoirs.
基金supported by the National Key Basic Research and Development Program of China (Grant No.2006CB202302)
文摘The Tazhong Uplift of the late Ordovician is a drowned rimmed carbonate platform. The carbonate rock of the late Ordovician Lianglitage Formation in the northern slope of the Tazhong region is one of the significant petroliferous intervals. Based on petrofacies, depositional cycles, natural gammaray spectrometry and carbon/oxygen isotope data from the Lianglitage Formation, one 2nd-order, three 3rd-order and several 4th-order sequences have been recognized, and the late Ordovician relative sealevel fluctuation curve has been established. The sequences O3 1-1 and O3 1-2 on the platform are composed of highstand and transgressive systems tracts, but lack the lowstand systems tract. The sequence O3 1-3 is a drowning sequence. The sequence O3 1-1 overlapped the eroded slope and pinched out to the northwest and landward. The highstand systems tract in the sequence O3 1-2 consists of low-angle sigmoid and high-angle shingled progradation configuration. Major sedimentary facies of the Lianglitage Formation include reef and shoal in the platform margin and lagoon, which can be subdivided into coral-sponge-stromatoporoid reef complex, sand shoal, lime mud mound, and intershoal sea. Reefs, sand shoals and their complex are potential reservoir facies. The reefs and sand shoals in the sequence O3 1-1 developed in the upper of its highstand systems tract. In the sequence O3 1-2, the highstand systems tract with an internal prograding configuration is a response to the lateral shifting of the complex of reef and sand shoal. The transgressive systems tract, in particular the sand shoals, developed widely on the slope of the platform margin and interior. The reefs in the sequence O3 1-3 migrated towards high positions and formed retrograding reefs in the western platform and low relief in the platform interior. Basinward lateral migration of the reefs and pure carbonate rock both characterize highstand systems tract and show that the rise of the relative sea-level was very slow. Shingled prograding stacking pattern of the 4th-order sequences and reefs grow horizontally, which represents the late stage of highstand systems tract and implies relative sealevel stillstand. Reefs migrating towards high land and impure carbonate rock both indicate transgressive systems tract and suggest that the relative sea-level rose fast. Erosional truncation and epidiagenetic karstification represent a falling relative sea-level. The relative sea-level fluctuation and antecedent palaeotopography control the development and distribution of reef complexes and unconformity karst zones. Currently, the composite zone of epidiagenetic karstic intervals and high-energy complexes of reefs and sand shoals with prograding configuration is an important oil and gas reservoir in the northern slope of the Tazhong carbonate platform.
基金supported by the National Basic Research Program of China (973 Program, Grant No.2006CB202308)
文摘The Tarim Basin is the largest petroliferous basin in the northwest of China, and is composed of a Paleozoic marine craton basin and a Meso-Cenozoic continental foreland basin. It is of great significance in exploration of Ordovician. In over 50 years of exploration, oil and gas totaling over 1.6 billion tonnes oil-equivalent has been discovered in the Ordovician carbonate formation. The accumulation mechanisms and distribution rules are quite complicated because of the burial depth more than 3,500 m, multi-source, and multi-stage accumulation, adjustment, reconstruction and re-enrichment in Ordovician. In this paper, we summarized four major advances in the hydrocarbon accumulation mechanisms of Ordovician carbonate reservoirs. First, oil came from Cambrian and Ordovician source rocks separately and as a mixture, while natural gas was mainly cracked gas generated from the Cambrian-Lower Ordovician crude oil. Second, most hydrocarbon migrated along unconformities and faults, with different directions in different regions. Third, hydrocarbon migration and accumulation had four periods: Caledonian, early Hercynian, late Hercynian and Himalayan, and the latter two were the most important for oil and gas exploration. Fourth, hydrocarbon accumulation and evolution can be generally divided into four stages: Caledonian (the period of hydrocarbon accumulation), early Hercynian (the period of destruction), late Hercynian (the period of hydrocarbon reconstruction and re-accumulation), and Himalayan (the period of hydrocarbon adjustment and re-accumulation). Source rocks (S), combinations of reservoir-seal (C), paleo-uplifts (M), structure balance belt (B) matched in the same time (T) control the hydrocarbon accumulation and distribution in the Ordovician formations. Reservoir adjustment and reconstruction can be classified into two modes of physical adjustment and variation of chemical compositions and five mechanisms. These mechanisms are occurrence displacement, biodegradation, multi-source mixing, high-temperature cracking and late gas invasion. Late hydrocarbon accumulation effects controlled the distribution of current hydrocarbon. The T-BCMS model is a basic geological model to help understanding the control of reservoirs. At present, the main problems of hydrocarbon accumulation focus on two aspects, dynamic mechanisms of hydrocarbon accumulation and the quantitative models of oil-bearing in traps, which need further systemic research.
基金supported by the National Natural Science Foundation of China(No.40972019)the S&T plan projects of Hubei Provincial Education Department(No. 03Z0105)+1 种基金the Project of Scientific and Technologic Development Planning of Jingzhou(No.20101P031-5)the Innovative Experimenting Plan of Undergraduate Students of China(No.091048934)
文摘The Early Ordovician System is composed mainly of a series of carbonate platform deposits interbedded with shale and is especially characterized by a large number of organic reefs or buildups that occur widely in the research area.The reefs have different thicknesses ranging from 0.5 m to 11.5 m and lengths varying from 1 m to 130 m.The reef-building organisms include Archaeoscyphia, Recepthaculitids,Batostoma,Cyanobacteria and Pulchrilamina.Through the research of characteristics of the reef-bearing strata of the Early Ordovician in the Yichang area,four sorts of biofacies are recognized,which are(1) shelly biofacies:containing Tritoechia-Pelmatozans community and Tritoechia-Pomatotrema community;(2) reef biofacies:including the Batostoma,Calathium-Archaeoscyphia, Pelmatozoa-Batostoma,Archeoscyphia and Calathium-Cyanobacteria communities; (3) standing-water biofacies:including the Acanthograptus-Dendrogptus and Yichangopora communities;and(4) allochthonous biofacies:containing Nanorthis-Psilocephlina taphocoense community.The analysis of sea-level changes indicates that there are four cycles of sea-level changes during the period when reef-bearing strata were formed in this area,and the development of reefs is obviously controlled by the velocity of sea-level changes and the growth of accommodation space.The authors hold that reefs were mostly formed in the high sea level periods.Because of the development of several subordinate cycles during the sea-level rising,the reefs are characterized by great quantity, wide distribution,thin thickness and small scale,which are similar to that of Juassic reefs in northern Tibet.The research on the evolution of communities shows that succession and replacement are the main forms.The former is favorable to the development of reefs and the latter indicates the disappearance of reefs.
文摘Chitinozoans collected from upper Tremadocian to lower Floian strata of Chenjiahe section, Yichang, western Hubei, China comprise six species belonging respectively to the genera Euconochitina including a new species, Euconochitina fenxiangensis, Lagenochitina and Bursachitina, together with Desmochitina sp. and Eremochitina sp. The chitinozoan succession across the interval is correlated with relevant conodont and chitinozoan biozones and two new regional chitinozoan biozones, the Lagenochitina destombesi Biozone and the Euconochitina symmetrica Biozone are proposed based on their stratigraphic ranges in the Fenxiang to Honghuayuan formations in the Chenjiahe section.
基金supported by the National Key Scientific Project of China(No.2011ZX05005-0042016ZX05005-002)the National Basic Research Program of China(973 Program)(No.2012CB214806)
文摘Stable carbon isotope ratio (δ13Ccarb) analysis has been widely applied to the study of the inter-conti- nental or global marine carbonate correlation. Large-scale Cambrian-Ordovician carbonate platforms were developed in the Tarim Basin. But research on fluctuation character- istics and global correlation of δ13Ccarb is still weak. Based on conodont biostratigraphy and whole-rock δ13Ccarb data in the Tahe oil-gas field of the northern Tarim Basin, the global correlation and genesis of positive carbon isotope excursions in the Darriwilian--Early Katian was exam- ined. Three positive excursions were identified in the Tahe oil-gas field including the middle Darriwilian carbon iso- tope excursion (MDICE), the Guttenberg carbon isotope excursion (GICE), and a positive excursion within the Pygodus anserinus conodont zone which is named the Early Sandbian carbon isotope excursion (ESICE) in this paper. Furthermore, these positive excursions had no direct relation with sea level fluctuations. MDICE and GICE could be globally correlated. The Middle-Upper Ordovi- cian Saergan Formation source rocks of the Kalpin outcrops were in accordance with the geological time of MDICE and ESICE. GICE had close relationship with the source rock of the Lianglitag Formation in the basin.Massive organic carbon burial was an important factor controlling the genesis of these positive excursions.
基金support from the Chinese Academy of Sciences (KZCX2-YW-122, CAS/SAFEA Program)the Ministry of Science and Technology of China (2006FY120300-4, 2008ZX05008-001)+2 种基金A.M. is grateful to the Deutsche Forschungsgemeinschaft (DFG Mu 2352/1)the Robert-Bosch-Stiftung (grant no. Nr. 32.5.8003.0009.0)the Uni-Bund Erlangen for their support
文摘The base of the Middle Ordovician (i.e. Dapingian Stage) has been defined at the first appearance datum (FAD) of conodont Baltoniodus? triangularis at Huanghuachang, Yichang, China,but the precise correlation of the boundary to regions of other facies remain to be resolved. Herein we review the biostratigraphy and chemostratigraphy of the Huanghuachang Global Standard Stratotype-Section and Point (GSSP) section, and present our latest stratigraphic work on the nearby Chenjiahe s ection in Yichang, and the Hengtang Quarry section, Jiangshan, Zhejiang, which is regarded as representative of slope facies. The conodont and graptolite biostratigraphy as well as chemostratigraphy of the Chenjiahe section indicate that the base of the Middle Ordovician also falls within the graptolite Azygograptus suecicus Zone, and coincides with a high or maximum δ13C value within a minor positive carbon isotope excursion, suggesting that the base boundary can be readily recognized across the entire Yangtze Gorges area. The integrated graptolite and conodont biostratigraphy and chemostratigraphy of the Hengtang section, Jiangshan, indicates that the basal boundary probably falls within the graptolite lsograptus caduceus imitatus Zone that overlies the Azygograptus suecicus Zone, and coincides with a remarkable drop of δ13C. This difference indicates that a multi-disciplinary approach is critical to identify the base boundary in those regions where the Baltoniodus ? triangularis is absent.
基金financially supported by the National Natural Science Foundation of China grant(41102087)the Key Project of the National Science & Technology grant(2011ZX05005-002-010HZ,2011ZX05009-002)+1 种基金National Basic Research Program of China grant (2012CB214802)the Special Foundation for Doctoral Subjects in China University of Geosciences(Beijing) grant(2011PY0199)
文摘The combination patterns and depositional characteristics of the carbonate banks are investigated based on outcrop sections, thin sections, and carbon isotopes of Ordovician in the western Tarim Basin, China. Four carbonate bank combination patterns are deposited in the Ordovician, western Tarim Basin, including: Reef-Bank Complex (RBC), Algae-Reef-Bank Interbed (ARBI), Thick-Layer Cake Aggradation Bank (TLCAB), and Thin-Layer Cake Retrogradation Bank (TLCRB). All combination patterns show clear periods vertically. The RBC is mainly composed of reefs and bioclastic banks, and the dimension of the RBC depends on the scale of the reefs. Bioclastic banks deposits surround the reefs. The range of the ARBI is determined by the scale of algae-reefs, algae peloid dolomite microfacies and algal dolomite microfacies deposit alternating vertically. TLCAB and TLCRB are deposited as layer-cakes stacking in cycles and extending widely with cross bedding developed. The grains of TLCAB and TLCRB are diverse and multi-source. With the impacting of relative sea level change, biological development and geomorphology, the ARBI, TLCAB or TLCRB, RBC are successively developed from the Lower Ordovician Penglaiba Formation to the Middle Ordovician Yijianfang Formation. The depositional environment analysis of Ordovician indicates that the RBC and ARBI can form effective oil and gas reservoirs, and the TLCAB and TLCRB have the potential to form the huge scale oil and gas reservoirs and to be the crucial targets of exploration for the Ordovician carbonate banks in the future.
基金Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.SHJT-17-42.17)Fundamental Research Funds for the Central Universities of China(Grant Nos.3142018009,3142017100)Key Laboratory of Mine Geological Hazards Mechanism and Control Project(KF2017-13).Figure 7 PCA plot of hydro-chemistry of Ordovician limestone karst(OL)water samples from different years.
文摘This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water over 40 years within a typical northern mountainous coal mine named Fengfeng Mine was studied by using Piper diagram, Gibbs scheme, ions correlation and Principal component analysis(PCA) methods. Results showed that, except for HCO3^-, the ions of Ca^2+, Mg^2+, SO4^2-,Na^++K^+, Cl^- and total dissolution solids(TDS) values all increased by years as mining continues. Different hydro-geochemical characteristics in different periods can reflect different water-rock interactions.Accordingly, sulfates dissolution gradually took place of carbonates in water-rock interaction. Especially,OL water-rock interactions in different periods were all affected by rock weathering and evaporationconcentration together. At last, evaporationconcentration co-effect dominated the hydrogeochemistry evolution slowly, along with significant cations exchange over years.
基金in part provided by Petro China(Grant No.09HT10500000068)Sinopec(Grant No.G5800-07-ZS-WX032)the State Key Lab of Oil/Gas Reservoir Geology and Exploitation at CDUT(Grant No.PLC200801)to H.Qing
文摘Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine-coarse euhedral floating dolomites (MD2); (3) fine-coarse euhedral dolomites (MD3); and (4) medium-very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰-0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165-0.709764); and high homogenization temperature (Th) values (98°C-225°C) and salinities (6 wt%-24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.
基金supported by the research program of Heilongjiang province (Nos. SDKC2017030 and HDKK201701)
文摘Early Ordovician A-type granites in the northeastern(NE) Songnen Block NE China were studied to better understand the geodynamic settings in this region.This research presents new zircon U–Pb ages and wholerock geochemical data for the Early Ordovician granites in the NE Songnen Block. Zircon U–Pb dating indicates that the granite in the Cuibei, Hongxing, and Meixi areas in the NE Songnen Block formed in the Early Ordovician with ages of 471–479 Ma. The granites show geochemical characteristics of high SiO2 and K2 O compositions and low FeOT, MgO, CaO, and P2 O5 compositions. They belong to a high K calc-alkaline series and display a weak peraluminous featurPe with A/CNK values of 0.98–1.14. The rocks have aREE composition of 249.98–423.94 ppm,and are enriched in LREE with(La/Yb)Nvalues of2.87–9.87, and display obvious Eu anomalies(d Eu =0.01–0.29). Trace elements of the studied granites are characterized by enrichment in Rb, Th, U, Pb, Hf, and Sm,and depletion of Ba, Nb, Ta, and Sr. They display geochemical features of high Zr +Y + Nb+Ce values(324–795 ppm) and Ga/Al ratios consistent with A-type granites. Based on particular geochemical features, such as high Rb/Nb(7.98–24.19) and Y/Nb(1.07–3.43), the studied A-type granites can be further classified as an A2-type subgroup. This research indicates that the Early Ordovician A-type granites were formed by the partial melting of ancient crust in an extensional setting. Lower Sr/Y and(Ho/Yb)Nratios indicate that plagioclase and amphibole are residual in the source, and garnet is absent, implying that the magma was generated at low levels of pressure. By contrast, the contemporaneous granites in the SE Xing'an Block suggest a subduction-related tectonic setting, and its adakitic property indicates a thickened continental crust.We suggest that the Paleo-Asian Ocean plate between the Xing'an and Songnen blocks subducted northward during the Early Ordovician. Meanwhile, the NE Songnen Block was exposed to a passive continental margin tectonic setting.