This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay....A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results, where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.展开更多
In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let ...In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.展开更多
In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first intro...In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.展开更多
An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time de...An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.展开更多
For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assum...For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.展开更多
The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear...The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear continuous systems confined by a bound function, the nonlinearities of the systems may be of varied forms or uncertain; the designed stabilizer is robust means that a class of nonlinear continuous systems can be stabilized by the same output feedback stabilization schemes; numerical simulation examples are given.展开更多
The output-feedback stabilization control problem is investigated for a class of nonlinear uncertain systems. Based on the multivariable analog of circle criterion, an observer is designed to estimate the system state...The output-feedback stabilization control problem is investigated for a class of nonlinear uncertain systems. Based on the multivariable analog of circle criterion, an observer is designed to estimate the system states and hence the dynamical equations that the estimation error satisfies are derived first. Then, by using integral backstepping approach together with completing square technique, the output-feedback stabilization control is constructively designed such that the closed-loop system is asymptotically stable. Finally, an example is given to illustrate the main results of this paper.展开更多
This paper investigates the problem of dynamic output-feedback control for a class of Lipschitz nonlinear systems.First,a continuous-time controller is constructed and sufficient conditions for stability of the nonlin...This paper investigates the problem of dynamic output-feedback control for a class of Lipschitz nonlinear systems.First,a continuous-time controller is constructed and sufficient conditions for stability of the nonlinear systems are presented.Then,a novel event-triggered mechanism is proposed for the Lipschitz nonlinear systems in which new event-triggered conditions are introduced.Consequently,a closed-loop hybrid system is obtained using the event-triggered control strategy.Sufficient conditions for stability of the closed-loop system are established in the framework of hybrid systems.In addition,an upper bound of a minimum inter-event interval is provided to avoid the Zeno phenomenon.Finally,numerical examples of a neural network system and a genetic regulatory network system are provided to verify the theoretical results and to show the superiority of the proposed method.展开更多
This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one ...This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one boundary value is measurable. This renders the system in question more general and practical, and the control problem more challenging. To solve the problem,an invertible transformation is first introduced to change the system into an observer canonical form,from which a couple of filters are constructed to estimate the unmeasurable states. Then, by adaptive technique and infinite-dimensional backstepping method, an adaptive controller is constructed which guarantees that all states of the resulting closed-loop system are bounded while the original system states converging to zero. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed method.展开更多
In this paper, a robust output-feedback adaptive control is proposed for linear time-invariant (LTI) single- input single-output (SISO) plants with unmeasurable input disturbance. Using dynamic surface control (...In this paper, a robust output-feedback adaptive control is proposed for linear time-invariant (LTI) single- input single-output (SISO) plants with unmeasurable input disturbance. Using dynamic surface control (DSC) technique, it is shown that the explosion of complexity problem in backstepping control can be eliminated. Furthermore, the proposed adaptive DSC scheme has the following merits: 1) by introducing an initialization technique, the L~ performance of system tracking error can be guaranteed even if the plant high-frequency gain is unknown and the input disturbance exists, and 2) the adaptive law is necessary only at the first design step, which significantly reduces the design procedure. It is proved that with the proposed scheme, all the closed-loop signals are semiglobally uniformly ultimately bounded. Simulation results are presented to demonstrate the effectiveness of the proposed scheme.展开更多
This paper deals with the global practical tracking problem by output-feedback for a class of uncertain cascade systems with zero-dynamics and unmeasured states dependent growth.The systems investigated are substantia...This paper deals with the global practical tracking problem by output-feedback for a class of uncertain cascade systems with zero-dynamics and unmeasured states dependent growth.The systems investigated are substantially different from the closely related works,and have zero-dynamics,unknown growth rate,and unknown time-varying control coefficients.This makes the problem much more difficult to solve.Motivated by the authors' recent works,this paper proposes a new adaptive control scheme to achieve the global practical tracking.It is shown that the designed controller guarantees that the state of the resulting closed-loop system is globally bounded and the tracking error converges to a prescribed arbitrarily small neighborhood of the origin after a finite time.This is achieved by combining the methods of universal control and dead zone with backstepping technique,and using the framework of performance analysis in the closely related works.A numerical example demonstrates the effectiveness of the theoretical results.展开更多
This paper is concerned with the global stabilization via output-feedback for a class of high-order stochastic nonlinear systems with unmeasurable states dependent growth and uncertain control coefficients. Indeed, th...This paper is concerned with the global stabilization via output-feedback for a class of high-order stochastic nonlinear systems with unmeasurable states dependent growth and uncertain control coefficients. Indeed, there have been abundant deterministic results which recently inspired the intense investigation for their stochastic analogous. However, because of the possibility of non-unique solutions to the systems, there lack basic concepts and theorems for the problem under investigation. First of all, two stochastic stability concepts are generalized to allow the stochastic systems with more than one solution, and a key theorem is given to provide the sufficient conditions for the stochastic stabilities in a weaker sense. Then, by introducing the suitable reduced order observer and appropriate control Lyapunov functions, and by using the method of adding a power integrator, a continuous (nonsmooth) output-feedback controller is successfully designed, which guarantees that the closed-loop system is globally asymptotically stable in probability.展开更多
This paper considers the consensus problem of a group of homogeneous agents. These agents are governed by a general linear system and can only directly measure the output, instead of the state. In order to achieve the...This paper considers the consensus problem of a group of homogeneous agents. These agents are governed by a general linear system and can only directly measure the output, instead of the state. In order to achieve the consensus goal, each agent estimates its state through a Luenberger observer, exchanges its estimated state with neighbors, and constructs the control input with the estimated states of its own and neighbors. Due to the existence of observation and process noises, only practical consensus, instead of asymptotical consensus, can be achieved in such multi-agent systems. The performance of the achieved practical consensus can be measured by the ultimate mean square deviation of the states of agents. That performance is closely related to the observation gains of the state observers and the control gains of agents. This paper proposes a method to optimize such performance with respect to the concerned observation and control gains. That method starts with a set of feasible observation and control gains and formulates a group of linear matrix inequalities (LMIs). Solving these LMIs gives some intermediate matrix variables. By perturbing observation and control gains, and the intermediate matrix variables, the original LMIs yield another group of LMIs, which can be solved to provide a descent direction of observation and control gains. Moving along that descent direction, observation and control gains can be improved to yield better performance and work as the starting point of the next iteration. By iteratively repeating this procedure, we can hopefully improve the consensus performance of the concerned multi-agent system. Simulations are done to demonstrate the effectiveness of the proposed method.展开更多
In this paper, the global asymptotic stabilization by output feedback is investigated for a class of uncertain nonlinear systems with unmeasured states dependent growth. Compared with the closely related works, the re...In this paper, the global asymptotic stabilization by output feedback is investigated for a class of uncertain nonlinear systems with unmeasured states dependent growth. Compared with the closely related works, the remarkableness of the paper is that either the growth rate is an unknown constant or the dimension of the closed-loop system is significantly reduced, mainly due to the introduction of a distinct dynamic high-gain observer based on a new updating law. Motivated by the related stabilization results, and by skillfully using the methods of universal control and backstepping, we obtain the design scheme to an adaptive output-feedback stabilizing controller to guarantee the global asymptotic stability of the resulting closed-loop system. Additionally, a numerical example is considered to demonstrate the effectiveness of the proposed method.展开更多
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金This work was supported by National Natural Science Foundation of China(NSFC)(No.60374015).
文摘A novel adaptive neural network (NN) output-feedback regulation algorithm for a class of nonlinear time-varying timedelay systems is proposed. Both the designed observer and controller are independent of time delay. Different from the existing results, where the upper bounding functions of time-delay terms are assumed to be known, we only use an NN to compensate for all unknown upper bounding functions without that assumption. The proposed design method is proved to be able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed system, and the system output is proved to converge to a small neighborhood of the origin. The simulation results verify the effectiveness of the control scheme.
基金supported by National Natural Science Foundation of China(61403013)the Aero-Science Foundation of China(2015ZA51009)
文摘In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.
基金This work was supported by the National Natural Science Foundation of China(No.60304002), and the Science and Technical Development Plan ofShandong Province(No.2004GG4204014).
文摘In this paper, the output tracking control is investigated for a class of nonlinear systems when only output is available for feedback. Based on the multivariable analog of circle criterion, an observer is first introduced. Then, the observer-based output tracking controller is constructively designed by using the integral backstepping approach together with completing square. It is shown that, under relatively mild conditions, all the closed-loop signals are uniformly bounded. Meanwhile the system output asymptotically tracks the desired output. A simulation example is given to illustrate the effectiveness of the theoretical results.
基金supported by the National Natural Science Foundation of China (60804021)the Fundamental Research Funds for the Central Universities (JY10000970001)
文摘An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.
基金supported by the National Natural Science Foundation of China (60804021)
文摘For the first time, an adaptive backstepping neural network control approach is extended to a class of stochastic non- linear output-feedback systems. Different from the existing results, the nonlinear terms are assumed to be completely unknown and only a neural network is employed to compensate for all unknown nonlinear functions so that the controller design is more simplified. Based on stochastic LaSalle theorem, the resulted closed-loop system is proved to be globally asymptotically stable in probability. The simulation results further verify the effectiveness of the control scheme.
基金This project was supported by the National Natural Science Foundation of China(69974017 60274020 60128303)
文摘The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear continuous systems confined by a bound function, the nonlinearities of the systems may be of varied forms or uncertain; the designed stabilizer is robust means that a class of nonlinear continuous systems can be stabilized by the same output feedback stabilization schemes; numerical simulation examples are given.
基金Supported by National Natural Science Foundation of China(60374002,60674036)the Science and Technical Development Plan of Shandong Province (2004GG4204014)the Program for New Century Excellent Talents in University of China
基金Supported by National Natural Science Foundation of China (60674036), the Science and Technical Development Plan of Shandong Province (2004GG4204014), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), and the Excellent Young and Middle-aged Scientist Award of Shandong Province of China (2007BS01010)
基金Supported by National Natural Science Foundation of P. R. China (60304002)the Science and Technology Development Plan of Shandong Province (2004GG4204014)
文摘The output-feedback stabilization control problem is investigated for a class of nonlinear uncertain systems. Based on the multivariable analog of circle criterion, an observer is designed to estimate the system states and hence the dynamical equations that the estimation error satisfies are derived first. Then, by using integral backstepping approach together with completing square technique, the output-feedback stabilization control is constructively designed such that the closed-loop system is asymptotically stable. Finally, an example is given to illustrate the main results of this paper.
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金National Natural Science Foundation of China (60674036, 60974003), the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (2007BS01010)
基金Supported by National Natural Science Foundations of China (61325016, 61273084, 61233014), Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), and the Independent Innovation Foundation of Shan- dong University (2012JC014)
基金supported by the Jiangsu Provincial Natural Science Foundation of China(No.BK20201340)the 333 High-level Talents Training Pro ject of Jiangsu Provincethe China Postdoctoral Science Foundation(No.2018M642160)。
文摘This paper investigates the problem of dynamic output-feedback control for a class of Lipschitz nonlinear systems.First,a continuous-time controller is constructed and sufficient conditions for stability of the nonlinear systems are presented.Then,a novel event-triggered mechanism is proposed for the Lipschitz nonlinear systems in which new event-triggered conditions are introduced.Consequently,a closed-loop hybrid system is obtained using the event-triggered control strategy.Sufficient conditions for stability of the closed-loop system are established in the framework of hybrid systems.In addition,an upper bound of a minimum inter-event interval is provided to avoid the Zeno phenomenon.Finally,numerical examples of a neural network system and a genetic regulatory network system are provided to verify the theoretical results and to show the superiority of the proposed method.
基金supported by the National Natural Science Foundations of China under Grant Nos.61821004,61873146 and 61773332the Special Fund of Postdoctoral Innovation Projects in Shandong Province under Grant No.201703012。
文摘This paper investigates the adaptive stabilization for a class of uncertain PDE-ODE cascaded systems. Remarkably, the PDE subsystem allows unknown control coefficient and spatially varying parameter, and only its one boundary value is measurable. This renders the system in question more general and practical, and the control problem more challenging. To solve the problem,an invertible transformation is first introduced to change the system into an observer canonical form,from which a couple of filters are constructed to estimate the unmeasurable states. Then, by adaptive technique and infinite-dimensional backstepping method, an adaptive controller is constructed which guarantees that all states of the resulting closed-loop system are bounded while the original system states converging to zero. Finally, a numerical simulation is provided to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.61273141)
文摘In this paper, a robust output-feedback adaptive control is proposed for linear time-invariant (LTI) single- input single-output (SISO) plants with unmeasurable input disturbance. Using dynamic surface control (DSC) technique, it is shown that the explosion of complexity problem in backstepping control can be eliminated. Furthermore, the proposed adaptive DSC scheme has the following merits: 1) by introducing an initialization technique, the L~ performance of system tracking error can be guaranteed even if the plant high-frequency gain is unknown and the input disturbance exists, and 2) the adaptive law is necessary only at the first design step, which significantly reduces the design procedure. It is proved that with the proposed scheme, all the closed-loop signals are semiglobally uniformly ultimately bounded. Simulation results are presented to demonstrate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China under Grant Nos.61325016,61273084,61233014,and 61304013the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China under Grant No.JQ200919+1 种基金the Independent Innovation Foundation of Shandong University under Grant No.2012JC014the Doctoral Foundation of Jinan University under Grant No.XBS1413
文摘This paper deals with the global practical tracking problem by output-feedback for a class of uncertain cascade systems with zero-dynamics and unmeasured states dependent growth.The systems investigated are substantially different from the closely related works,and have zero-dynamics,unknown growth rate,and unknown time-varying control coefficients.This makes the problem much more difficult to solve.Motivated by the authors' recent works,this paper proposes a new adaptive control scheme to achieve the global practical tracking.It is shown that the designed controller guarantees that the state of the resulting closed-loop system is globally bounded and the tracking error converges to a prescribed arbitrarily small neighborhood of the origin after a finite time.This is achieved by combining the methods of universal control and dead zone with backstepping technique,and using the framework of performance analysis in the closely related works.A numerical example demonstrates the effectiveness of the theoretical results.
基金supported by the National Natural Science Foundations of China (Nos. 60974003, 61143011, 61273084, 61233014)the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (No. JQ200919)the Independent Innovation Foundation of Shandong University (No. 2012JC014)
文摘This paper is concerned with the global stabilization via output-feedback for a class of high-order stochastic nonlinear systems with unmeasurable states dependent growth and uncertain control coefficients. Indeed, there have been abundant deterministic results which recently inspired the intense investigation for their stochastic analogous. However, because of the possibility of non-unique solutions to the systems, there lack basic concepts and theorems for the problem under investigation. First of all, two stochastic stability concepts are generalized to allow the stochastic systems with more than one solution, and a key theorem is given to provide the sufficient conditions for the stochastic stabilities in a weaker sense. Then, by introducing the suitable reduced order observer and appropriate control Lyapunov functions, and by using the method of adding a power integrator, a continuous (nonsmooth) output-feedback controller is successfully designed, which guarantees that the closed-loop system is globally asymptotically stable in probability.
基金The work of W. Zheng and Q. Ling was partially supported by the National Natural Science Foundation of China (No. 61273112) and the National Key Research and Development Project (No. 2016YFC0201003). The work of H. Lin was partially supported by the National Science Foundation (Nos. NSF-CNS-1239222, NSF-CNS-1446288, NSF-EECS-1253488).
文摘This paper considers the consensus problem of a group of homogeneous agents. These agents are governed by a general linear system and can only directly measure the output, instead of the state. In order to achieve the consensus goal, each agent estimates its state through a Luenberger observer, exchanges its estimated state with neighbors, and constructs the control input with the estimated states of its own and neighbors. Due to the existence of observation and process noises, only practical consensus, instead of asymptotical consensus, can be achieved in such multi-agent systems. The performance of the achieved practical consensus can be measured by the ultimate mean square deviation of the states of agents. That performance is closely related to the observation gains of the state observers and the control gains of agents. This paper proposes a method to optimize such performance with respect to the concerned observation and control gains. That method starts with a set of feasible observation and control gains and formulates a group of linear matrix inequalities (LMIs). Solving these LMIs gives some intermediate matrix variables. By perturbing observation and control gains, and the intermediate matrix variables, the original LMIs yield another group of LMIs, which can be solved to provide a descent direction of observation and control gains. Moving along that descent direction, observation and control gains can be improved to yield better performance and work as the starting point of the next iteration. By iteratively repeating this procedure, we can hopefully improve the consensus performance of the concerned multi-agent system. Simulations are done to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundations of China (Nos. 60974003, 61143011, 61273084, 61233014)the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (No. JQ200919)the Independent Innovation Foundation of Shandong University (No. 2012JC014)
文摘In this paper, the global asymptotic stabilization by output feedback is investigated for a class of uncertain nonlinear systems with unmeasured states dependent growth. Compared with the closely related works, the remarkableness of the paper is that either the growth rate is an unknown constant or the dimension of the closed-loop system is significantly reduced, mainly due to the introduction of a distinct dynamic high-gain observer based on a new updating law. Motivated by the related stabilization results, and by skillfully using the methods of universal control and backstepping, we obtain the design scheme to an adaptive output-feedback stabilizing controller to guarantee the global asymptotic stability of the resulting closed-loop system. Additionally, a numerical example is considered to demonstrate the effectiveness of the proposed method.