Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti...Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.展开更多
Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery ...Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.展开更多
Welding residual stress in the engineering structure has a non-negligible influence on crack propagation,and crack closure is a significant factor affecting the crack propagation.Based on the elastoplastic finite elem...Welding residual stress in the engineering structure has a non-negligible influence on crack propagation,and crack closure is a significant factor affecting the crack propagation.Based on the elastoplastic finite element method and crack closure theory,we studied crack closure and residual compressive stress field of butt-welded plates under constant amplitude loading and overloading regarding the stress ratio,maximum load,overload ratio,and number of overloads.The results show that the welding residual tensile stress can decrease the crack closure because of a decrease in the residual compressive stress in the wake zone,but the effect is gradually reduced with increased stress ratio or maximum load.And the combined effect of welding residual tensile stress and overload can produce a stronger retardation effect on crack propagation.展开更多
Male Wistar rats were used to study the changes of the structure and architecture of the smooth muscle cells(SMCs) of the aorta under pressure overloading(PO).The aorta was cut open longitudinally and the tunica media...Male Wistar rats were used to study the changes of the structure and architecture of the smooth muscle cells(SMCs) of the aorta under pressure overloading(PO).The aorta was cut open longitudinally and the tunica media was examined with a histological tech展开更多
The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Prop...The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.展开更多
The ability of a pavement structure in carrying out its function reduces in line with the increase of traffic load, especially if there are overloaded heavy vehicle passing through the road. This study was done to kno...The ability of a pavement structure in carrying out its function reduces in line with the increase of traffic load, especially if there are overloaded heavy vehicle passing through the road. This study was done to know the effect of overloading vehicles on the road pavement and remaining service life of the pavement. In this study, the service life of pavement due to overloaded vehicles was analyzed using the AASHTO 1993. In Narayanghat-Mugling road the composition of traffic seems to be 83.76% heavy vehicles, 9.18% medium vehicle and 7.05% light vehicle. For the direction of Narayanghat-Mugling, the pavement service life might be reduced by 59.90% due to overloading condition, while for the opposite direction, the service life would not reduced caused by the same factor. The impact of overload conditions on the road pavement showed premature failure;that is, a condition which the damage reduced the life of roads before the design life of the road is reached. From the results, it can be concluded that overloaded vehicles on the road are very influential to the reduction in pavement service life. Therefore, it is expected that road users to comply with existing regulations in the conduct of transportation. As overloading is increasing, it has to be controlled by rules and regulations with penalty to control the overloading. So fines must be associated with intensified enforcement when considered in further strategy. Regular monitoring, inspection and enforcement are the effective ways to control overloading. Use of technology (Automatic overloading information system) may be the effective way to control the overloading.展开更多
Overloading is a method to extend capacity limitation of multiple access techniques. The system becomes overloaded, when the number of users exceeds the signal dimensions. One of the efficient schemes to overload a CD...Overloading is a method to extend capacity limitation of multiple access techniques. The system becomes overloaded, when the number of users exceeds the signal dimensions. One of the efficient schemes to overload a CDMA system is to use two sets of orthogonal signal waveforms (O/O). In this paper, the BER performance of a new overloading scheme using scrambled orthogonal Gold code (OG/OG) sets is evaluated with soft decision interference cancellation (SDIC) receiver. When complex scrambling is not used, it is shown that OG/OG scheme provides 25% (16 extra users) channel overloading for synchronous DS-CDMA system in an AWGN channel, with an SNR degradation of about 0.35 dB as compared to single user bound at a BER of 1e-5. We have evaluated the overloading performance, when two set are scrambled with set specific deterministic or random complex scrambling sequence. It is shown that the amount of overloading increases significantly from 25% to 63% (40 extra users) by using random complex scrambling for N=64. For deterministic (periodic) scrambling, the overloading percentage increases considerably to 78. On a Rayleigh fading channel, an overloading of 40% is obtained without scrambling at a BER of 5e-4 with near single user performance. With complex scrambling overloading % increases considerably to 100%.展开更多
The study of the deflection due to the passage of an axle on a pavement structure has the advantage to make possible to pronounce on the portance, the rigidity and the homogeneity of this one. In the case where the al...The study of the deflection due to the passage of an axle on a pavement structure has the advantage to make possible to pronounce on the portance, the rigidity and the homogeneity of this one. In the case where the allowed axle load is not respected, surface deflection leads to premature deterioration of the roadway. In order to study the evolution of these deformations, deflection measurements were made by using the Benkelman method in the Fatick-Kaolack road in Senegal by varying the axle load with the following values: 10, 13 and 16 tons on three different zones. The results show a linear evolution of the deflection as a function of the axle load. Also, the impact of truck overloading was studied by considering different values of the axle load with comparison to the allowed axle load by using frequent types of vehicle. A numerical simulation of the Cast3M pavement was done first, in the case of an isolated single wheel with a radius of 12.5 cm, then in the case of an equivalent dual wheel with a radius of 18.1 cm for loads of 10 to 19 tons. In the same way, the pavement design software (ALIZE) is used to analyse the variation of the axle load. The results show a linear evolution of the deflection, which corroborates the measurements made in the field and those obtained by Samb (2014) with a slope coefficient equal to 1.7. Nevertheless, the case of an isolated single wheel of 12.5 cm radius is closest to the measurements with a straight line of slope coefficient equal to 1.9.展开更多
Vehicle replacement time depends mainly on the rate of deterioration.Overloading has been found to be a significant factor of deterioration and cost accumulation.We examined the impact of overloading on vehicle deteri...Vehicle replacement time depends mainly on the rate of deterioration.Overloading has been found to be a significant factor of deterioration and cost accumulation.We examined the impact of overloading on vehicle deterioration and its total costs and hence the replacement time of vehicle fleets in Nigeria.The research design was a mixture of field survey and a longitudinal study of vehicle fleets of three transport companies in Benin City,Nigeria.The population of the study consisted of all interstate transport companies in Benin City.Multi-stage sampling was used to select the three transport companies studied.An overloading factor was developed and used to estimate the cost of operating overloaded vehicles.Research data were analysed using discrete dynamic programming,which was implemented using computer software developed through Pascal Programming.Results indicate that overloading significantly precipitates vehicle deterioration,increases operating and total cost and thus affects replacement time of vehicles.展开更多
The analysis of slope earthquake stability is one of the most important research subjects in geotechnical engineering and earthquake engineering.Two different concepts of slope earthquake stability are put forward:st...The analysis of slope earthquake stability is one of the most important research subjects in geotechnical engineering and earthquake engineering.Two different concepts of slope earthquake stability are put forward:strength reserve stability and dynamic overloading stability.The first concept of slope earthquake stability has been widely accepted,and relative analysis methods are also well de-veloped;the second one,however,is seldom mentioned until now,and the failure criterion and the analysis method based on this concept are yet to be explored.What are researched are just the failure criterion and the analysis method of dynamic overloading earthquake stability.The criterion of critical earthquake peak acceleration for the dynamic overloading stability of a slope and its analysis method,the load increasing method(LIM),are put forward.The dynamic overloading earthquake stability of a loess slope at Changshougou(长寿沟) in Baoji(宝鸡) City,Shaanxi(陕西) Province,China,is analyzed with LIM.The analysis result reveals that the dynamic overloading earthquake stability of the slope is quite high to the action of the earthquake ground motion,with exceeding probability of 10% in the next 50 years.展开更多
Unbalanced operating condition in a power system can cause partial overloading of the generators in the network,a condition where one or two of the three phases of the generator become overloaded even if the total 3-p...Unbalanced operating condition in a power system can cause partial overloading of the generators in the network,a condition where one or two of the three phases of the generator become overloaded even if the total 3-phase power output of the generator is within its specified limit.Partial overloading of generators beyond certain limits is undesirable and must be avoided.Distribution systems are often subjected to highly unbalanced operating conditions.Introduction of distributed generations(DGs),therefore,has rendered today’s distribution systems quite susceptible to this problem.Mitigation of this problem requires the issue to be addressed properly during analysis,operation and planning of such systems.Analysis,operation and planning of power networks under unbalanced operating condition require 3-phase load flow study.The existing methods of 3-phase load flow are not equipped to take into account any limit on the loadings of the individual phases of the generators.In the present work,a methodology based on NewtonRaphson(N-R)3-phase load flow with necessary modifications is proposed.The proposed methodology is able to determine the safe loading limits of the generators,and,can be adopted for operation and planning of power networks under unbalanced operating conditions to overcome the above difficulties.Test results on IEEE-37 bus feeder network are presented to demonstrate the effectiveness of the proposed method.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanica...To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanical stress.Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells(NPCs).Importantly,Piezo1-induced iron influx was independent of the transferrin receptor(TFRC),a well-recognized iron gatekeeper.Furthermore,pharmacological inactivation of Piezo1 profoundly reduced iron accumulation,alleviated mitochondrial ROS,and suppressed ferroptotic alterations in stimulation of mechanical stress.Moreover,conditional knockout of Piezo1(Col2a1-CreERT Piezo1^(flox/flox))attenuated the mechanical injury-induced intervertebral disc degeneration(IVDD).Notably,the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout(cDKO)mice(Col2a1-CreERT Piezo1^(flox/flox)/Gpx4^(flox/flox)).These findings suggest that Piezo1 is a potential determinant of iron influx,indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.展开更多
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bo...Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.展开更多
The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted...The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.展开更多
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen...In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.展开更多
Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An ...Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.展开更多
Mechanical overloading and aging are two essential factors for osteoarthritis(OA)development.Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte ...Mechanical overloading and aging are two essential factors for osteoarthritis(OA)development.Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology,but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated.展开更多
Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to creat...Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to create a silicosis model.Ferrostatin-1(Fer-1)and deferoxamine(DFO)were used to suppress ferroptosis.Serum biomarkers,oxidative stress markers,histopathology,iron content,and the expression of ferroptosis-related proteins were assessed.Results SiO_(2) altered serum cardiac injury biomarkers,oxidative stress,iron accumulation,and ferroptosis markers in myocardial tissue.Fer-1 and DFO reduced lipid peroxidation and iron overload,and alleviated SiO_(2)-induced mitochondrial damage and myocardial injury.SiO_(2) inhibited Nuclear factor erythroid 2-related factor 2(Nrf2)and its downstream antioxidant genes,while Fer-1 more potently reactivated Nrf2 compared to DFO.Conclusion Iron overload-induced ferroptosis contributes to SiO_(2)-induced cardiac injury.Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO_(2) cardiotoxicity,potentially via modulation of the Nrf2 pathway.展开更多
基金supported in part by the Key Research Projects of Higher Education Institutions in Henan Province(Grant No.24A560021)in part by the Henan Postdoctoral Foundation(Grant No.202102015).
文摘Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles.
基金HI-tech Research and Development Program of China
文摘Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use. Lunar exploration is also one of the most important projects in China. A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lander, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dynamics of a system with flexible cantilevers attached to the main lander is analyzed. The equations are derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.
基金supported by the National Natural Science Foundation of China (Grant No. 51779198)
文摘Welding residual stress in the engineering structure has a non-negligible influence on crack propagation,and crack closure is a significant factor affecting the crack propagation.Based on the elastoplastic finite element method and crack closure theory,we studied crack closure and residual compressive stress field of butt-welded plates under constant amplitude loading and overloading regarding the stress ratio,maximum load,overload ratio,and number of overloads.The results show that the welding residual tensile stress can decrease the crack closure because of a decrease in the residual compressive stress in the wake zone,but the effect is gradually reduced with increased stress ratio or maximum load.And the combined effect of welding residual tensile stress and overload can produce a stronger retardation effect on crack propagation.
文摘Male Wistar rats were used to study the changes of the structure and architecture of the smooth muscle cells(SMCs) of the aorta under pressure overloading(PO).The aorta was cut open longitudinally and the tunica media was examined with a histological tech
文摘The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.
文摘The ability of a pavement structure in carrying out its function reduces in line with the increase of traffic load, especially if there are overloaded heavy vehicle passing through the road. This study was done to know the effect of overloading vehicles on the road pavement and remaining service life of the pavement. In this study, the service life of pavement due to overloaded vehicles was analyzed using the AASHTO 1993. In Narayanghat-Mugling road the composition of traffic seems to be 83.76% heavy vehicles, 9.18% medium vehicle and 7.05% light vehicle. For the direction of Narayanghat-Mugling, the pavement service life might be reduced by 59.90% due to overloading condition, while for the opposite direction, the service life would not reduced caused by the same factor. The impact of overload conditions on the road pavement showed premature failure;that is, a condition which the damage reduced the life of roads before the design life of the road is reached. From the results, it can be concluded that overloaded vehicles on the road are very influential to the reduction in pavement service life. Therefore, it is expected that road users to comply with existing regulations in the conduct of transportation. As overloading is increasing, it has to be controlled by rules and regulations with penalty to control the overloading. So fines must be associated with intensified enforcement when considered in further strategy. Regular monitoring, inspection and enforcement are the effective ways to control overloading. Use of technology (Automatic overloading information system) may be the effective way to control the overloading.
文摘Overloading is a method to extend capacity limitation of multiple access techniques. The system becomes overloaded, when the number of users exceeds the signal dimensions. One of the efficient schemes to overload a CDMA system is to use two sets of orthogonal signal waveforms (O/O). In this paper, the BER performance of a new overloading scheme using scrambled orthogonal Gold code (OG/OG) sets is evaluated with soft decision interference cancellation (SDIC) receiver. When complex scrambling is not used, it is shown that OG/OG scheme provides 25% (16 extra users) channel overloading for synchronous DS-CDMA system in an AWGN channel, with an SNR degradation of about 0.35 dB as compared to single user bound at a BER of 1e-5. We have evaluated the overloading performance, when two set are scrambled with set specific deterministic or random complex scrambling sequence. It is shown that the amount of overloading increases significantly from 25% to 63% (40 extra users) by using random complex scrambling for N=64. For deterministic (periodic) scrambling, the overloading percentage increases considerably to 78. On a Rayleigh fading channel, an overloading of 40% is obtained without scrambling at a BER of 5e-4 with near single user performance. With complex scrambling overloading % increases considerably to 100%.
文摘The study of the deflection due to the passage of an axle on a pavement structure has the advantage to make possible to pronounce on the portance, the rigidity and the homogeneity of this one. In the case where the allowed axle load is not respected, surface deflection leads to premature deterioration of the roadway. In order to study the evolution of these deformations, deflection measurements were made by using the Benkelman method in the Fatick-Kaolack road in Senegal by varying the axle load with the following values: 10, 13 and 16 tons on three different zones. The results show a linear evolution of the deflection as a function of the axle load. Also, the impact of truck overloading was studied by considering different values of the axle load with comparison to the allowed axle load by using frequent types of vehicle. A numerical simulation of the Cast3M pavement was done first, in the case of an isolated single wheel with a radius of 12.5 cm, then in the case of an equivalent dual wheel with a radius of 18.1 cm for loads of 10 to 19 tons. In the same way, the pavement design software (ALIZE) is used to analyse the variation of the axle load. The results show a linear evolution of the deflection, which corroborates the measurements made in the field and those obtained by Samb (2014) with a slope coefficient equal to 1.7. Nevertheless, the case of an isolated single wheel of 12.5 cm radius is closest to the measurements with a straight line of slope coefficient equal to 1.9.
文摘Vehicle replacement time depends mainly on the rate of deterioration.Overloading has been found to be a significant factor of deterioration and cost accumulation.We examined the impact of overloading on vehicle deterioration and its total costs and hence the replacement time of vehicle fleets in Nigeria.The research design was a mixture of field survey and a longitudinal study of vehicle fleets of three transport companies in Benin City,Nigeria.The population of the study consisted of all interstate transport companies in Benin City.Multi-stage sampling was used to select the three transport companies studied.An overloading factor was developed and used to estimate the cost of operating overloaded vehicles.Research data were analysed using discrete dynamic programming,which was implemented using computer software developed through Pascal Programming.Results indicate that overloading significantly precipitates vehicle deterioration,increases operating and total cost and thus affects replacement time of vehicles.
基金supported by the National Natural Science Foundation of China (No. 40902086)
文摘The analysis of slope earthquake stability is one of the most important research subjects in geotechnical engineering and earthquake engineering.Two different concepts of slope earthquake stability are put forward:strength reserve stability and dynamic overloading stability.The first concept of slope earthquake stability has been widely accepted,and relative analysis methods are also well de-veloped;the second one,however,is seldom mentioned until now,and the failure criterion and the analysis method based on this concept are yet to be explored.What are researched are just the failure criterion and the analysis method of dynamic overloading earthquake stability.The criterion of critical earthquake peak acceleration for the dynamic overloading stability of a slope and its analysis method,the load increasing method(LIM),are put forward.The dynamic overloading earthquake stability of a loess slope at Changshougou(长寿沟) in Baoji(宝鸡) City,Shaanxi(陕西) Province,China,is analyzed with LIM.The analysis result reveals that the dynamic overloading earthquake stability of the slope is quite high to the action of the earthquake ground motion,with exceeding probability of 10% in the next 50 years.
文摘Unbalanced operating condition in a power system can cause partial overloading of the generators in the network,a condition where one or two of the three phases of the generator become overloaded even if the total 3-phase power output of the generator is within its specified limit.Partial overloading of generators beyond certain limits is undesirable and must be avoided.Distribution systems are often subjected to highly unbalanced operating conditions.Introduction of distributed generations(DGs),therefore,has rendered today’s distribution systems quite susceptible to this problem.Mitigation of this problem requires the issue to be addressed properly during analysis,operation and planning of such systems.Analysis,operation and planning of power networks under unbalanced operating condition require 3-phase load flow study.The existing methods of 3-phase load flow are not equipped to take into account any limit on the loadings of the individual phases of the generators.In the present work,a methodology based on NewtonRaphson(N-R)3-phase load flow with necessary modifications is proposed.The proposed methodology is able to determine the safe loading limits of the generators,and,can be adopted for operation and planning of power networks under unbalanced operating conditions to overcome the above difficulties.Test results on IEEE-37 bus feeder network are presented to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金supported in part by the National Nature Science Foundation(81874022 and 82172483 to Xinyu Liu,82102522 to Lianlei Wang,82072478 to Yunpeng Zhao,82072435 to Qiang Yang,82073437 to Weiwei Li,81930070 to Shiqing Feng,82272548 to Lei Cheng)Key R&D Project of Shandong Province(2022CXGC010503 to Xinyu Liu)+1 种基金Shandong Natural Science Foundation(ZR202102210113 to Lianlei Wang,ZR2020YQ54 to Yunpeng Zhao)Shandong Province Taishan Scholar Project(tsqn202211317 to Lianlei Wang).The authors thank the Translational Medicine Core Facility of Shandong University for the consultation and instrument availability that supported this work.
文摘To date,several molecules have been found to facilitate iron influx,while the types of iron influx channels remain to be elucidated.Here,Piezo1 channel was identified as a key iron transporter in response to mechanical stress.Piezo1-mediated iron overload disturbed iron metabolism and exaggerated ferroptosis in nucleus pulposus cells(NPCs).Importantly,Piezo1-induced iron influx was independent of the transferrin receptor(TFRC),a well-recognized iron gatekeeper.Furthermore,pharmacological inactivation of Piezo1 profoundly reduced iron accumulation,alleviated mitochondrial ROS,and suppressed ferroptotic alterations in stimulation of mechanical stress.Moreover,conditional knockout of Piezo1(Col2a1-CreERT Piezo1^(flox/flox))attenuated the mechanical injury-induced intervertebral disc degeneration(IVDD).Notably,the protective effect of Piezo1 deficiency in IVDD was dampened in Piezo1/Gpx4 conditional double knockout(cDKO)mice(Col2a1-CreERT Piezo1^(flox/flox)/Gpx4^(flox/flox)).These findings suggest that Piezo1 is a potential determinant of iron influx,indicating that the Piezo1-iron-ferroptosis axis might shed light on the treatment of mechanical stress-induced diseases.
基金supported in part by National Natural Science Foundation of China(32271364 & 31971240)Interdisciplinary innovation project from West China Hospital of Stomatology, Sichuan University(RD-03-202305)。
文摘Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A(Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM) model. Firstly, bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs) within 24 hours.Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
文摘The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.
文摘In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.
基金Project(2023YFC2907204)supported by the National Key Research and Development Program of ChinaProject(52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Key Technology Research Projects of Power China。
文摘Underground energy and resource development,deep underground energy storage and other projects involve the global stability of multiple interconnected cavern groups under internal and external dynamic disturbances.An evaluation method of the global stability coefficient of underground caverns based on static overload and dynamic overload was proposed.Firstly,the global failure criterion for caverns was defined based on its band connection of plastic-strain between multi-caverns.Then,overloading calculation of the boundary geostress and seismic intensity on the caverns model was carried out,and the critical unstable state of multi-caverns can be identified,if the plastic-strain band appeared between caverns during these overloading processes.Thus,the global stability coefficient for the multi-caverns under static loading and earthquake was obtained based on the corresponding overloading coefficient.Practical analysis for the Yingliangbao(YLB)hydraulic caverns indicated that this method can not only effectively obtain the global stability coefficient of caverns under static and dynamic earthquake conditions,but also identify the caverns’high-risk zone of local instability through localized plastic strain of surrounding rock.This study can provide some reference for the layout design and seismic optimization of underground cavern group.
基金supported by grants from Natural Science Foundation of China grant No 82172491 (CN)National Natural Science Funds for Excellent Young Scholar No 82322044 (CN)+2 种基金National Key Research and Development Program of China (2022YFC3601902)Youth Talent Support Programme of Guangdong Provincial Association for Science and Technology (SKXRC202308)State-funded postdoctoral researcher program No GZC20231062 (CN)。
文摘Mechanical overloading and aging are two essential factors for osteoarthritis(OA)development.Mitochondria have been identified as a mechano-transducer situated between extracellular mechanical signals and chondrocyte biology,but their roles and the associated mechanisms in mechanical stress-associated chondrocyte senescence and OA have not been elucidated.
基金supported by the National Natural Science Foundation of China[No.U21A20334,82373544]Hebei Provincial Department of Science and Technology Centrally Guided Local Development Fund Project[236Z7705G]Occupational health risk assessment and the formulation of national occupational health standards[102393220020090000020].
文摘Objective The aim of this study was to explore the role and mechanism of ferroptosis in SiO_(2)-induced cardiac injury using a mouse model.Methods Male C57BL/6 mice were intratracheally instilled with SiO_(2) to create a silicosis model.Ferrostatin-1(Fer-1)and deferoxamine(DFO)were used to suppress ferroptosis.Serum biomarkers,oxidative stress markers,histopathology,iron content,and the expression of ferroptosis-related proteins were assessed.Results SiO_(2) altered serum cardiac injury biomarkers,oxidative stress,iron accumulation,and ferroptosis markers in myocardial tissue.Fer-1 and DFO reduced lipid peroxidation and iron overload,and alleviated SiO_(2)-induced mitochondrial damage and myocardial injury.SiO_(2) inhibited Nuclear factor erythroid 2-related factor 2(Nrf2)and its downstream antioxidant genes,while Fer-1 more potently reactivated Nrf2 compared to DFO.Conclusion Iron overload-induced ferroptosis contributes to SiO_(2)-induced cardiac injury.Targeting ferroptosis by reducing iron accumulation or inhibiting lipid peroxidation protects against SiO_(2) cardiotoxicity,potentially via modulation of the Nrf2 pathway.