This paper presents a cross-media semantic mining model (CSMM) based on object semantic. This model obtains object-level semantic information in terms of maximum probability principle. Then semantic templates are tr...This paper presents a cross-media semantic mining model (CSMM) based on object semantic. This model obtains object-level semantic information in terms of maximum probability principle. Then semantic templates are trained and constructed with STTS (Semantic Template Training System), which are taken as the bridge to realize the transition from various low-level media feature to object semantic. Furthermore, we put forward a kind of double layers metadata structure to efficaciously store and manage mined low-level feature and high-level semantic. This model has broad application in lots of domains such as intelligent retrieval engine, medical diagnoses, multimedia design and so on.展开更多
基金Supported by the National Basic Research Program of China 973 Program (2007CB310801)the Specialized Research Fund for the Doctoral Program of Higer Education of China (20070486064)+1 种基金the Natural Science Foundation of Hubei Province (2007ABA038)the Programme of Introducing Talents of Discipline to Universities (B07037)
文摘This paper presents a cross-media semantic mining model (CSMM) based on object semantic. This model obtains object-level semantic information in terms of maximum probability principle. Then semantic templates are trained and constructed with STTS (Semantic Template Training System), which are taken as the bridge to realize the transition from various low-level media feature to object semantic. Furthermore, we put forward a kind of double layers metadata structure to efficaciously store and manage mined low-level feature and high-level semantic. This model has broad application in lots of domains such as intelligent retrieval engine, medical diagnoses, multimedia design and so on.