We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplaci...We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18].展开更多
The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we der...The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we derive the corresponding integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the two types of the bounded domains. Secondly we obtain the unified integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the general bounded domains. When functions are holomorphic, the integral formulas in this paper include formulas of Stout^([1]), Hatziafratis^([2]) and the author^([3]),and are the extension of all the integral representations for holomorphic functions in the existing papers to analytic varieties. In particular, when m = 0, firstly we gave the integral representation formulas of differentiable functions for the two types of bounded domains in C^n. Therefore they can make the concretion of Leray-Stokes formula. Secondly we obtain the unified integral representation formulas of differentiable functions for general bounded domains in C^n. So they can make the Leray-Stokes formula generalizations.展开更多
Some exponential type representation formulas for C-semigroups are given in Banach space. Moreover, we obtain a corresponding Voronovskaja - type asymptotic formula.
This paper derives energy level formula for two moving charged particles with Coulomb coupling by making full use of two mutually conjugate entangled state representations. These newly introduced entangled state repre...This paper derives energy level formula for two moving charged particles with Coulomb coupling by making full use of two mutually conjugate entangled state representations. These newly introduced entangled state representations seem to provide a direct and convenient approach for solving certain dynamical problems for two-body systems.展开更多
In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special c...In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special cases.We also give the quantitative estimations for the general formulae.展开更多
In this paper, with the help of the eigenvalue properties of orthogonal tensors in n-dimensional Euclidean space and the representations of the orthogonal tensors in 2-dimensional space, the canonical representations ...In this paper, with the help of the eigenvalue properties of orthogonal tensors in n-dimensional Euclidean space and the representations of the orthogonal tensors in 2-dimensional space, the canonical representations of orthogonal tensors in n-dimensional Euclidean space are easily gotten. The paper also gives all the constraint relationships among the principal invariants of arbitrarily given orthogonal tensor by use of Cayley-Hamilton theorem; these results make it possible to solve all the eigenvalues of any orthogonal tensor based on a quite reduced equation of m-th order, where m is the integer part ofn \2. Finally, the formulae of the degree of freedom of orthogonal tensors are given.展开更多
The decomposition of the representations T0(v∈R) ore considered here. The Plancherel formula for the universal covering group of SU(1,1) is also deduced.
In this paper, firstly using different method and technique we derive the cor-responding integral representation formulas of (0, q)(q 〉 0) differential forms for the twotypes of the bounded domains in complex sub...In this paper, firstly using different method and technique we derive the cor-responding integral representation formulas of (0, q)(q 〉 0) differential forms for the twotypes of the bounded domains in complex submanifolds with codimension-m. Secondly weobtain the unified integral representation formulas of (0, q)(q 〉 0) differential forms for thegeneral bounded domain in complex submanifold with codimension-m, which include Hatzi-afratis formula, i.e. Koppelman type integral formula for the bounded domain with smoothboundary in analytic varieties. In particular, when m -- 0, we obtain the unified integralrepresentation formulas of (0, q)(q 〉 0) differential forms for general bounded domain in Cn,which are the generalization and the embodiment of Koppelman-Leray formula.展开更多
In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit ...In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit form of the Logarithmic-Sobolev inequality.To this end,we also present the integration by parts formula for such a measure,which is obtained via its pull back formula and the Bismut method.展开更多
We consider a normalized family F of analytic functions f, whose common domain is the complement of a closed ray in the complex plane. If f(z) is real when z is real and the range of f does not intersect the nonpositi...We consider a normalized family F of analytic functions f, whose common domain is the complement of a closed ray in the complex plane. If f(z) is real when z is real and the range of f does not intersect the nonpositive real axis, then f can be reproduced by integrating the biquadratic kernel against a probability measure u(t) . It is shown that while this integral representation does not characterize the family F, it applies to a large class of functions, including a collection of functions which multiply the Hardy space Hp into itself.展开更多
We investigate the highest weight representations of the q-deformed Virasoro algebra of Hom-type. In order to determine its unitarity and irreducible highest weight representations, we present its Kac determinant form...We investigate the highest weight representations of the q-deformed Virasoro algebra of Hom-type. In order to determine its unitarity and irreducible highest weight representations, we present its Kac determinant formula when q is nonzero and non-root of unity.展开更多
Civen two doubling measures μ and v in a metric apace (S.p)of homogeneous type. let B_0 S be a given ball. It has been a well-known result bv now (see)[1 4])theat the validity of an L^1→L^1 Poincaré inequality ...Civen two doubling measures μ and v in a metric apace (S.p)of homogeneous type. let B_0 S be a given ball. It has been a well-known result bv now (see)[1 4])theat the validity of an L^1→L^1 Poincaré inequality of the following form: f_B|f-f_B|dv≤cr(B)f_Bgdμ. for all metric balls B B_0 S, implies a variant of representation formula of fractonal integral type: |f(x)-f_(B(11))|≤C integral from n=B_(11) g(y)p(x, y)/μ(B(x, p(x, y)))dμ(y)+C(r(B_0))/(μ(B_0))integral from n=B_0 g(y)dμ(y). One of the main results of this paper shows that an L^1 to L^q Poincaré inequality for some 01, i.e.. (f_B|f-f_B|~q dv)^(1/q)≤cr(B) f_B gdμ, for all metric balls B B_0. will suffice to imply the above representation formula. As an immediate corollary, we can show that the weak-type condition. sup_(λ>0)(λv({x ∈ B:|f(x)-f_B|>λ}))/v(B)≤Gr (B)f_B gdμ. also implies the same formula. Analogous theorems related to high-order Poincaréinequalities and Sobolev spaces in metric spaces are also proved.展开更多
Using squeezing transform in the context of quantum optics and based on the Fourier series expansion we rigorously derive a new Poisson sum formula. Application of this new formula to the representation transformation...Using squeezing transform in the context of quantum optics and based on the Fourier series expansion we rigorously derive a new Poisson sum formula. Application of this new formula to the representation transformation of kq-wave function for describing electrons in periodic lattice is demonstrated. In so doing, the transition matrix element of harmonic oscillator in kq representation is derived.展开更多
In this paper we set up quantum mechanical correspondence of the Poisson integral formula.We show that Poisson kernel function existing in the transformation between the continuum entangled state representation and it...In this paper we set up quantum mechanical correspondence of the Poisson integral formula.We show that Poisson kernel function existing in the transformation between the continuum entangled state representation and its induced state,i.e.the number-difference-correlated amplitude entangled state representation.展开更多
In this article, we give a new proof of the Itôformula for some integral processes related to the space-time Lévy noise introduced in [1] [2] as an alternative for the Gaussian white noise perturbing an...In this article, we give a new proof of the Itôformula for some integral processes related to the space-time Lévy noise introduced in [1] [2] as an alternative for the Gaussian white noise perturbing an SPDE. We discuss two applications of this result, which are useful in the study of SPDEs driven by a space-time Lévy noise with finite variance: a maximal inequality for the p-th moment of the stochastic integral, and the Itôrepresentation theorem leading to a chaos expansion similar to the Gaussian case.展开更多
文摘We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18].
文摘The closure of the bounded domains D in Cnconsists of a chain of the slit spaces,and may be divided into two types. Based on the two types of bounded domains in C^n, firstly using different method and technique we derive the corresponding integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the two types of the bounded domains. Secondly we obtain the unified integral representation formulas of differentiable functions for complex n-m(0 ≤ m < n) dimensional analytic varieties in the general bounded domains. When functions are holomorphic, the integral formulas in this paper include formulas of Stout^([1]), Hatziafratis^([2]) and the author^([3]),and are the extension of all the integral representations for holomorphic functions in the existing papers to analytic varieties. In particular, when m = 0, firstly we gave the integral representation formulas of differentiable functions for the two types of bounded domains in C^n. Therefore they can make the concretion of Leray-Stokes formula. Secondly we obtain the unified integral representation formulas of differentiable functions for general bounded domains in C^n. So they can make the Leray-Stokes formula generalizations.
文摘Some exponential type representation formulas for C-semigroups are given in Banach space. Moreover, we obtain a corresponding Voronovskaja - type asymptotic formula.
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. Y2008A23)the Natural Science Foundation of Liaocheng University (Grant No. X071049)
文摘This paper derives energy level formula for two moving charged particles with Coulomb coupling by making full use of two mutually conjugate entangled state representations. These newly introduced entangled state representations seem to provide a direct and convenient approach for solving certain dynamical problems for two-body systems.
文摘In this paper we obtained general representation formulae for strongly continuous cosine operator functions via probabilistic approach,which include Webb's[1]and Shaw's[2]formulae and some new one as special cases.We also give the quantitative estimations for the general formulae.
文摘In this paper, with the help of the eigenvalue properties of orthogonal tensors in n-dimensional Euclidean space and the representations of the orthogonal tensors in 2-dimensional space, the canonical representations of orthogonal tensors in n-dimensional Euclidean space are easily gotten. The paper also gives all the constraint relationships among the principal invariants of arbitrarily given orthogonal tensor by use of Cayley-Hamilton theorem; these results make it possible to solve all the eigenvalues of any orthogonal tensor based on a quite reduced equation of m-th order, where m is the integer part ofn \2. Finally, the formulae of the degree of freedom of orthogonal tensors are given.
文摘The decomposition of the representations T0(v∈R) ore considered here. The Plancherel formula for the universal covering group of SU(1,1) is also deduced.
文摘In this paper, firstly using different method and technique we derive the cor-responding integral representation formulas of (0, q)(q 〉 0) differential forms for the twotypes of the bounded domains in complex submanifolds with codimension-m. Secondly weobtain the unified integral representation formulas of (0, q)(q 〉 0) differential forms for thegeneral bounded domain in complex submanifold with codimension-m, which include Hatzi-afratis formula, i.e. Koppelman type integral formula for the bounded domain with smoothboundary in analytic varieties. In particular, when m -- 0, we obtain the unified integralrepresentation formulas of (0, q)(q 〉 0) differential forms for general bounded domain in Cn,which are the generalization and the embodiment of Koppelman-Leray formula.
基金supported by the National Natural Science Foundation of China(11801064)。
文摘In this paper,we consider the measure determined by a fractional OrnsteinUhlenbeck process.For such a measure,we establish an explicit form of the martingale representation theorem and consequently obtain an explicit form of the Logarithmic-Sobolev inequality.To this end,we also present the integration by parts formula for such a measure,which is obtained via its pull back formula and the Bismut method.
文摘We consider a normalized family F of analytic functions f, whose common domain is the complement of a closed ray in the complex plane. If f(z) is real when z is real and the range of f does not intersect the nonpositive real axis, then f can be reproduced by integrating the biquadratic kernel against a probability measure u(t) . It is shown that while this integral representation does not characterize the family F, it applies to a large class of functions, including a collection of functions which multiply the Hardy space Hp into itself.
基金Supported by the National Natural Science Foundation of China(11047030)Supported by the Science and Technology Program of Henan Province(152300410061)
文摘We investigate the highest weight representations of the q-deformed Virasoro algebra of Hom-type. In order to determine its unitarity and irreducible highest weight representations, we present its Kac determinant formula when q is nonzero and non-root of unity.
基金The first author is supported partly by the U.S. National Science Foundation Grant Nos. DMS96-22996 and DMS99-70352.supported partly by DGICYT Grant PB940192. Spainsupported partly by NATO Collaborative Research G
文摘Civen two doubling measures μ and v in a metric apace (S.p)of homogeneous type. let B_0 S be a given ball. It has been a well-known result bv now (see)[1 4])theat the validity of an L^1→L^1 Poincaré inequality of the following form: f_B|f-f_B|dv≤cr(B)f_Bgdμ. for all metric balls B B_0 S, implies a variant of representation formula of fractonal integral type: |f(x)-f_(B(11))|≤C integral from n=B_(11) g(y)p(x, y)/μ(B(x, p(x, y)))dμ(y)+C(r(B_0))/(μ(B_0))integral from n=B_0 g(y)dμ(y). One of the main results of this paper shows that an L^1 to L^q Poincaré inequality for some 01, i.e.. (f_B|f-f_B|~q dv)^(1/q)≤cr(B) f_B gdμ, for all metric balls B B_0. will suffice to imply the above representation formula. As an immediate corollary, we can show that the weak-type condition. sup_(λ>0)(λv({x ∈ B:|f(x)-f_B|>λ}))/v(B)≤Gr (B)f_B gdμ. also implies the same formula. Analogous theorems related to high-order Poincaréinequalities and Sobolev spaces in metric spaces are also proved.
基金Supported by the President Foundation of Chinese Academy of Sciencethe Specialized Research Fund for the Doctorial Progress of Higher Education in China under Grant No. 20070358009
文摘Using squeezing transform in the context of quantum optics and based on the Fourier series expansion we rigorously derive a new Poisson sum formula. Application of this new formula to the representation transformation of kq-wave function for describing electrons in periodic lattice is demonstrated. In so doing, the transition matrix element of harmonic oscillator in kq representation is derived.
基金Supported by the National Natural Science Foundation of China under Grant No.10874174 the Specialized Reserach Fund for The Doctoral Progress of Higher Education of China under Grant No.20070358009
文摘In this paper we set up quantum mechanical correspondence of the Poisson integral formula.We show that Poisson kernel function existing in the transformation between the continuum entangled state representation and its induced state,i.e.the number-difference-correlated amplitude entangled state representation.
基金funded by a grant from the Natural Sciences and Engineering Research Council of Canada.
文摘In this article, we give a new proof of the Itôformula for some integral processes related to the space-time Lévy noise introduced in [1] [2] as an alternative for the Gaussian white noise perturbing an SPDE. We discuss two applications of this result, which are useful in the study of SPDEs driven by a space-time Lévy noise with finite variance: a maximal inequality for the p-th moment of the stochastic integral, and the Itôrepresentation theorem leading to a chaos expansion similar to the Gaussian case.