A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where th...A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where the expected lifetime costs were minimized with a constraint on the minimum acceptable reliability index. The safety margins were established for the inspection events, the repair events and the failure events for ship structures. Moreover, the formulae were derived to calculate failure probabilities and repair probabilities. Based on them, a component subjected to corrosion is investigated for illustration of the process of selecting the optimal inspection and repair strategy. Furthermore, some sensitivity studies were provided. The results show that the optimal inspection instants should take place before the reliability index reaches the minimum acceptable reliability index. The optimal target failure probability is 10 -3 . In addition, a balance can be achieved between the risk cost and total expected inspection and repair costs by means of the risk-based optimal inspection and repair method, which is very effective in selecting the optimal inspection and repair strategy.展开更多
This research article is based on a study of optimal frequency to the repairable system due to the failure finding interval to maximize as well as minimize the availability of some components devices. We studied toget...This research article is based on a study of optimal frequency to the repairable system due to the failure finding interval to maximize as well as minimize the availability of some components devices. We studied together maintenance and corrective actions that carried out item of failure and periodic failure finding designed to check whether a system is still working. The model is proved as well as useful application in detecting the problem related to finding failure tasks of different scheme devices by maximization. The model formulated and the numerical application to the relevant mathematical model have been discussed to demonstrate the article quality. Therefore based on probability analytic development, the optimal maintenance policy is then obtained as solution of an optimization problem in which the maintenance cost rate is the objective function and the risk of corrective maintenance is the constraint function. Finally, the solution to the optimal device in the considered development model has been well adjusted due to derivation to the experimental observation rather than theory which will be taken into consideration in the next applied practical design research related and the system device provided that, the proactive device agreed with using the exponential distribution to the survive distribution function which can not be considered as valid.展开更多
This paper proposes an optimal failure-finding interval (FFI) model based on maximizing expected availability. The model can be viewed as an extension and improvement to the model presented in Moubray (1997). Nume...This paper proposes an optimal failure-finding interval (FFI) model based on maximizing expected availability. The model can be viewed as an extension and improvement to the model presented in Moubray (1997). Numerical results are also included to illustrate the appropriateness of the proposed model.展开更多
文摘A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where the expected lifetime costs were minimized with a constraint on the minimum acceptable reliability index. The safety margins were established for the inspection events, the repair events and the failure events for ship structures. Moreover, the formulae were derived to calculate failure probabilities and repair probabilities. Based on them, a component subjected to corrosion is investigated for illustration of the process of selecting the optimal inspection and repair strategy. Furthermore, some sensitivity studies were provided. The results show that the optimal inspection instants should take place before the reliability index reaches the minimum acceptable reliability index. The optimal target failure probability is 10 -3 . In addition, a balance can be achieved between the risk cost and total expected inspection and repair costs by means of the risk-based optimal inspection and repair method, which is very effective in selecting the optimal inspection and repair strategy.
文摘This research article is based on a study of optimal frequency to the repairable system due to the failure finding interval to maximize as well as minimize the availability of some components devices. We studied together maintenance and corrective actions that carried out item of failure and periodic failure finding designed to check whether a system is still working. The model is proved as well as useful application in detecting the problem related to finding failure tasks of different scheme devices by maximization. The model formulated and the numerical application to the relevant mathematical model have been discussed to demonstrate the article quality. Therefore based on probability analytic development, the optimal maintenance policy is then obtained as solution of an optimization problem in which the maintenance cost rate is the objective function and the risk of corrective maintenance is the constraint function. Finally, the solution to the optimal device in the considered development model has been well adjusted due to derivation to the experimental observation rather than theory which will be taken into consideration in the next applied practical design research related and the system device provided that, the proactive device agreed with using the exponential distribution to the survive distribution function which can not be considered as valid.
文摘This paper proposes an optimal failure-finding interval (FFI) model based on maximizing expected availability. The model can be viewed as an extension and improvement to the model presented in Moubray (1997). Numerical results are also included to illustrate the appropriateness of the proposed model.