The optimal foraging theory predicts that predators choose prey with more net rate of energy intake and less energy costs if there are multiple food sources available. Toxins are found in many species in nature. Those...The optimal foraging theory predicts that predators choose prey with more net rate of energy intake and less energy costs if there are multiple food sources available. Toxins are found in many species in nature. Those toxins may be produced by prey as self- protection from predatory animals, or come from other sources such as pesticide residue. Therefore, it requires a balance between energy intake and toxicity damage. In order to study the interactive effect of prey toxin and optimal foraging strategy, we construct a predator-prey model with toxin-induced functional response and optimal foraging property. Dynamical analysis shows that the optimal strategy system presents more complex dynamical behavior than the fixed preference system. We conclude that optimal foraging strategy might play a key role in stabilizing or destabilizing the coexistence states of the species in the system, depending on the level of prey toxins.展开更多
This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and impro...This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and improve survival rates.We introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer classification.The diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks(CNNs)in feature extraction and model constructions,and utilizing the power of various Machine Learning(ML)algorithms for final classification.Specifically,we consider different scenarios consisting of two-class colon cancer,three-class lung cancer,and fiveclass combined lung/colon cancer to conduct feature extraction using four CNNs.These extracted features are then integrated to create a comprehensive feature set.In the next step,the optimization of the feature selection is conducted using a metaheuristic algorithm based on the Electric Eel Foraging Optimization(EEFO).This optimized feature subset is subsequently employed in various ML algorithms to determine the most effective ones through a rigorous evaluation process.The top-performing algorithms are refined using the High-Performance Filter(HPF)and integrated into an ensemble learning framework employing weighted averaging.Our findings indicate that the proposed ensemble learning model significantly surpasses existing methods in classification accuracy across all datasets,achieving accuracies of 99.85%for the two-class,98.70%for the three-class,and 98.96%for the five-class datasets.展开更多
In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy u...In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.展开更多
The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources.The developments of artificial intellig...The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources.The developments of artificial intelligence(AI)and machine learning(ML)models assist in the effectual design of medical data classification models.Therefore,this article concentrates on the development of optimal Stacked Long Short Term Memory Sequence-toSequence Autoencoder(OSAE-LSTM)model for biomedical data classification.The presented OSAE-LSTM model intends to classify the biomedical data for the existence of diseases.Primarily,the OSAE-LSTM model involves min-max normalization based pre-processing to scale the data into uniform format.Followed by,the SAE-LSTM model is utilized for the detection and classification of diseases in biomedical data.At last,manta ray foraging optimization(MRFO)algorithm has been employed for hyperparameter optimization process.The utilization of MRFO algorithm assists in optimal selection of hypermeters involved in the SAE-LSTM model.The simulation analysis of the OSAE-LSTM model has been tested using a set of benchmark medical datasets and the results reported the improvements of the OSAELSTM model over the other approaches under several dimensions.展开更多
Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),whi...Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.展开更多
Power transformers in transmission network are utilized for increasing or decreasing the voltage level. Power Transformers fail to connect directly to the consumers that result in the less load fluctuations. Powe...Power transformers in transmission network are utilized for increasing or decreasing the voltage level. Power Transformers fail to connect directly to the consumers that result in the less load fluctuations. Power transformer operation under any abnormal condition decreases the lifetime of the transformer. Power Transformer protection from inrush and internal fault is critical issue in power system because the obstacle lies in the precise and swift distinction between them. Due to the limitation of heterogeneous resources, occurrence of fault poses severe problem. Providing an efficient mechanism to differentiate between faults (i.e. inrush and internal) is the key for efficient information flow. In this paper, the task of detecting inrush and internal fault in power transformers is formulated as an optimization problem which is solved by using Hyperbolic S-Transform Bacterial Foraging Optimization (HS-TBFO) technique. The Gaussian Frequency- based Hyperbolic S-Transform detects the faults at much earlier stage and therefore minimizes the computation cost by applying Cosine Hyperbolic S-Transform. Next, the Bacterial Foraging Optimization (BFO) technique has been proposed and has demonstrated the capability of identifying the maximum number of faults covered with minimum test cases and therefore improving the fault detection efficiency in a wise manner. The HS-TBFO technique is evaluated and validated in various simulation test cases to detect inrush and internal fault in a significant manner. This HS-TBFO technique is investigated based on three phase power transformer embedded in a power system fed from both ends. Results have confirmed that the HS-TBFO technique is capable of categorizing the inrush and internal faults by identifying maximum number of faults with minimum computation cost as compared to the state-of-the-art works.展开更多
A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatm...A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatment outcomes,develop more effective medical devices,or arrive at a more accurate diagnosis.This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction.The classification process was conducted with the aid of a convolu-tional neural network(CNN)with dual graphs.Evaluation of the performance of the fused model is carried out with various methods.In the initial input Com-puter Tomography(CT)image,150 images are pre-processed and segmented to identify cancerous and non-cancerous nodules.The geometrical,statistical,struc-tural,and texture features are extracted from the preprocessed segmented image using various methods such as Gray-level co-occurrence matrix(GLCM),Histo-gram-oriented gradient features(HOG),and Gray-level dependence matrix(GLDM).To select the optimal features,a novel fusion approach known as Whale-Bacterial Foraging Optimization is proposed.For the classification of lung cancer,dual graph convolutional neural networks have been employed.A com-parison of classification algorithms and optimization algorithms has been con-ducted.According to the evaluated results,the proposed fused algorithm is successful with an accuracy of 98.72%in predicting lung tumors,and it outper-forms other conventional approaches.展开更多
At present,the traditional channel estimation algorithms have the disadvantages of over-reliance on initial conditions and high complexity.The bacterial foraging optimization(BFO)-based algorithm has been applied in w...At present,the traditional channel estimation algorithms have the disadvantages of over-reliance on initial conditions and high complexity.The bacterial foraging optimization(BFO)-based algorithm has been applied in wireless communication and signal processing because of its simple operation and strong self-organization ability.But the BFO-based algorithm is easy to fall into local optimum.Therefore,this paper proposes the quantum bacterial foraging optimization(QBFO)-binary orthogonal matching pursuit(BOMP)channel estimation algorithm to the problem of local optimization.Firstly,the binary matrix is constructed according to whether atoms are selected or not.And the support set of the sparse signal is recovered according to the BOMP-based algorithm.Then,the QBFO-based algorithm is used to obtain the estimated channel matrix.The optimization function of the least squares method is taken as the fitness function.Based on the communication between the quantum bacteria and the fitness function value,chemotaxis,reproduction and dispersion operations are carried out to update the bacteria position.Simulation results showthat compared with other algorithms,the estimationmechanism based onQBFOBOMP algorithm can effectively improve the channel estimation performance of millimeter wave(mmWave)massive multiple input multiple output(MIMO)systems.Meanwhile,the analysis of the time ratio shows that the quantization of the bacteria does not significantly increase the complexity.展开更多
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic fields.Introduced in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing ins...This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic fields.Introduced in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault foraging.These biologically inspired strategies allow for effective solutions to intricate physical challenges.With its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization problems.Its utility and benefits have found traction in numerous academic sectors.Since its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference proceedings.This paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization challenges.Research trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively.展开更多
Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning thes...Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning these parameters a sensitive step to maintain a good performance.On the other hand,and as any other classifier,the performance of SVM is also affected by the input set of features used to build the learning model,which makes the selection of relevant features an important task not only to preserve a good classification accuracy but also to reduce the dimensionality of datasets.In this paper,the MRFO+SVM algorithm is introduced by investigating the recent manta ray foraging optimizer to fine-tune the SVM parameters and identify the optimal feature subset simultaneously.The proposed approach is validated and compared with four SVM-based algorithms over eight benchmarking datasets.Additionally,it is applied to a disease Covid-19 dataset.The experimental results show the high ability of the proposed algorithm to find the appropriate SVM’s parameters,and its acceptable performance to deal with feature selection problem.展开更多
The distribution of organisms within a community can often be determined by the degree of plasticity or degree of specialization of resource acquisition. Resource acquisition is often based on the morphology of an org...The distribution of organisms within a community can often be determined by the degree of plasticity or degree of specialization of resource acquisition. Resource acquisition is often based on the morphology of an organism, behavior, or a combination of both. Performance tests of feeding can identify the possible interactions that allow one species to better exploit a prey item. Scavenging behaviors in the presence or absence of a competitor were investigated by quantifying prey selection in a trophic generalist, spiny dogfish Squalus acanthias, and atrophic specialist, smooth-hounds Mustelus canis, in order to determine if each shark scavenged according to its jaw morphology. The diet of dogfish consists of small fishes, squid, ctenophores, and bi- valves; they are expected to be nonselective predators. Smooth-hounds primarily feed on crustaceans; therefore, they are predicted to select crabs over other prey types. Prey selection was quantified by ranking each prey item according to the order it was consumed. Dietary shifts were analyzed by comparing the percentage of each prey item selected during solitary versus competitive scavenging. When scavenging alone, dogfish prefer herring and squid, which are easily handled by the cutting dentition of dogfish. Dogfish shift their diet to include a greater number of prey types when scavenging with a competitor. Smooth-hounds scavenge on squid, herring, and shrimp when alone, but increase the number of crabs in the diet when scavenging competitively. Competition causes smooth-hounds to scavenge according to their jaw morphology and locomotor abilities, which enables them to feed on a specialized resource [Current Zoology 56 (1): 100-108 2010].展开更多
Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In th...Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.展开更多
Non-orthogonal multiple access(NOMA)is a strong contender multicarrier waveform technique for the fth generation(5G)communication system.The high peak-to-average power ratio(PAPR)is a serious concern in designing the ...Non-orthogonal multiple access(NOMA)is a strong contender multicarrier waveform technique for the fth generation(5G)communication system.The high peak-to-average power ratio(PAPR)is a serious concern in designing the NOMA waveform.However,the arrangement of NOMA is different from the orthogonal frequency division multiplexing.Thus,traditional reduction methods cannot be applied to NOMA.A partial transmission sequence(PTS)is commonly utilized to minimize the PAPR of the transmitting NOMA symbol.The choice phase aspect in the PTS is the only non-linear optimization obstacle that creates a huge computational complication due to the respective non-carrying sub-blocks in the unitary NOMA symbol.In this study,an efcient phase factor is proposed by presenting a novel bacterial foraging optimization algorithm(BFOA)for PTS(BFOA-PTS).The PAPR minimization is accomplished in a two-stage process.In the initial stage,PTS is applied to the NOMA signal,resulting in the partition of the NOMA signal into an act of sub-blocks.In the second stage,the best phase factor is generated using BFOA.The performance of the proposed BFOA-PTS is thoroughly investigated and compared to the traditional PTS.The simulation outcomes reveal that the BFOA-PTS efciently optimizes the PAPR performance with inconsequential complexity.The proposed method can signicantly offer a gain of 4.1 dB and low complexity compared with the traditional OFDM.展开更多
Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining th...Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining them.The investigation of the histopathological image is a problematic and laborious process that necessitates the expert’s knowledge.At the same time,deep learning(DL)techniques are able to derive features,extract data,and learn advanced abstract data representation.With this view,this paper presents an ensemble of handcrafted with deep learning enabled histopathological image classification(EHCDL-HIC)model.The proposed EHCDLHIC technique initially performs Weiner filtering based noise removal technique.Once the images get smoothened,an ensemble of deep features and local binary pattern(LBP)features are extracted.For the classification process,the bidirectional gated recurrent unit(BGRU)model can be employed.At the final stage,the bacterial foraging optimization(BFO)algorithm is utilized for optimal hyperparameter tuning process which leads to improved classification performance,shows the novelty of the work.For validating the enhanced execution of the proposed EHCDL-HIC method,a set of simulations is performed.The experimentation outcomes highlighted the betterment of the EHCDL-HIC approach over the existing techniques with maximum accuracy of 94.78%.Therefore,the EHCDL-HIC model can be applied as an effective approach for histopathological image classification.展开更多
The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling c...The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches.展开更多
A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious ta...A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious task due to the amount of data and the heterogeneity of the data.Thus,in this paper,a Radial Basis Function Neural Network(RBFNN)trained using Manta Ray Foraging Optimization algorithm(MRFO)is proposed.RBFNN is a three-layer network comprising of input,output,and hidden layers that can process large amounts.The trained network can discover hidden data patterns in unseen data.The learning algorithm and seed selection play a vital role in the performance of the network.The seed selection is done using the spectral indices to further improve the performance of the network.The manta ray foraging optimization algorithm is inspired by the intelligent behaviour of manta rays.It emulates three unique foraging behaviours namelys chain,cyclone,and somersault foraging.The satellite images contain enormous amount of data and thus require exploration in large search space.The spiral movement of the MRFO algorithm enables it to explore large search spaces effectively.The proposed method is applied on pre and post flooding Landsat 8 Operational Land Imager(OLI)images of New Brunswick area.The method was applied to identify and classify the land cover changes in the area induced by flooding.The images are classified using the proposed method and a change map is developed using post classification comparison.The change map shows that a large amount of agricultural area was washed away due to flooding.The measurement of the affected area in square kilometres is also performed for mitigation activities.The results show that post flooding the area covered by water is increased whereas the vegetated area is decreased.The performance of the proposed method is done with existing state-of-the-art methods.展开更多
Recursion by herbivores is the repeated use of the same site or plants. Recursion by wild animals is rarely investigated but may be ubiquitous. Optimal foraging theory predicts site recursion as a function of the qual...Recursion by herbivores is the repeated use of the same site or plants. Recursion by wild animals is rarely investigated but may be ubiquitous. Optimal foraging theory predicts site recursion as a function of the quality of the site, extent of its last use, and time since its last use because these influence site resource status and recovery. We used GPS collars, behaviour and site sampling to investigate recursion to foraging sites for two elephant Elephas maximus borneensis herds in the Lower Kinabatangan Wildlife Sanctuary, Borneo, over a 12 month period. Recursion occurred to 48 out of 87 foraging sites and was most common within 48 hours or between 151-250 days, indicating two different types ofrecursion. Recursion was more likely to occur if the site had previously been occupied for longer. Moreover, the time spent at a site at recursion was the same as the time spent at the site on the first occasion. The number of days that had passed between the first visit and recursion was also positively correlated with how much time was spent at the site at recursion. Habitat type also influenced the intensity of site-use, with more time spent at recursion within riverine/open grass areas along forest margins compared to other habitat types. Recursion is a common behaviour used by the elephants and its pattern suggests it may be a foraging strategy for revisiting areas of greater value. The qualities of recursion sites might usefully be incorporated into landscape management strategies for elephant conservation in the area [Current Zoology 60 (4): 551-559, 2014].展开更多
In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formu...In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.展开更多
Inspired by the foraging behavior of E.coli bacteria,bacterial foraging optimization(BFO)has emerged as a powerful technique for solving optimization problems.However,BFO shows poor performance on complex and high-dim...Inspired by the foraging behavior of E.coli bacteria,bacterial foraging optimization(BFO)has emerged as a powerful technique for solving optimization problems.However,BFO shows poor performance on complex and high-dimensional optimization problems.In order to improve the performance of BFO,a new dynamic bacterial foraging optimization based on clonal selection(DBFO-CS)is proposed.Instead of fixed step size in the chemotaxis operator,a new piecewise strategy adjusts the step size dynamically by regulatory factor in order to balance between exploration and exploitation during optimization process,which can improve convergence speed.Furthermore,reproduction operator based on clonal selection can add excellent genes to bacterial populations in order to improve bacterial natural selection and help good individuals to be protected,which can enhance convergence precision.Then,a set of benchmark functions have been used to test the proposed algorithm.The results show that DBFO-CS offers significant improvements than BFO on convergence,accuracy and robustness.A complex optimization problem of model reduction on stable and unstable linear systems based on DBFO-CS is presented.Results show that the proposed algorithm can efficiently approximate the systems.展开更多
The associations between feeding activities and environmental variables inform animal feeding tactics that max-imize energetic gains by minimizing energy costs while maximizing feeding success.Relevant studies in aqua...The associations between feeding activities and environmental variables inform animal feeding tactics that max-imize energetic gains by minimizing energy costs while maximizing feeding success.Relevant studies in aquatic animals,particularly marine mammals,are scarce due to difficulties in the observation of feeding behaviors in aquatic environments.This data scarcity concurrently hinders ecosystem-basedfishery management in the context of small toothed-cetacean conservation.In the present study,a passive acoustic monitoring station was deployed in an East Asianfinless porpoise habitat in Laizhou Bay to investigate potential relationships between East Asianfinless porpoises and their prey.The data revealed that porpoises were acoustically present nearly every day during the survey period.Porpoise detection rates differed between spring and autumn in concert with activities offish choruses.During spring,fish choruses were present throughout the afternoon,and this was the time when porpoise vocalizations were the most frequently detected.During autumn,whenfish choruses were absent,porpoise detec-tion rates decreased,and diurnal patterns were not detected.The close association betweenfish choruses andfin-less porpoise activities implies an“eavesdropping”feeding strategy to maximize energetic gains,similar to other toothed cetaceans that are known to engage similar feeding strategies.Underwater noise pollution,particularly those maskingfish choruses,could interruptfinless porpoises’feeding success.Fisheries competing soniferousfishes withfinless porpoise could impactfinless porpoise viability through ecosystem disruption,in addition tofishing gear entanglement.展开更多
基金The author thanks the referees very much for their valuable comments and suggestions. The work is supported by the Fhndamental Research Funds for the Central Universities (No. 74005701), National Natural Science Foundation of China (No. 11771033).
文摘The optimal foraging theory predicts that predators choose prey with more net rate of energy intake and less energy costs if there are multiple food sources available. Toxins are found in many species in nature. Those toxins may be produced by prey as self- protection from predatory animals, or come from other sources such as pesticide residue. Therefore, it requires a balance between energy intake and toxicity damage. In order to study the interactive effect of prey toxin and optimal foraging strategy, we construct a predator-prey model with toxin-induced functional response and optimal foraging property. Dynamical analysis shows that the optimal strategy system presents more complex dynamical behavior than the fixed preference system. We conclude that optimal foraging strategy might play a key role in stabilizing or destabilizing the coexistence states of the species in the system, depending on the level of prey toxins.
文摘This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and improve survival rates.We introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer classification.The diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks(CNNs)in feature extraction and model constructions,and utilizing the power of various Machine Learning(ML)algorithms for final classification.Specifically,we consider different scenarios consisting of two-class colon cancer,three-class lung cancer,and fiveclass combined lung/colon cancer to conduct feature extraction using four CNNs.These extracted features are then integrated to create a comprehensive feature set.In the next step,the optimization of the feature selection is conducted using a metaheuristic algorithm based on the Electric Eel Foraging Optimization(EEFO).This optimized feature subset is subsequently employed in various ML algorithms to determine the most effective ones through a rigorous evaluation process.The top-performing algorithms are refined using the High-Performance Filter(HPF)and integrated into an ensemble learning framework employing weighted averaging.Our findings indicate that the proposed ensemble learning model significantly surpasses existing methods in classification accuracy across all datasets,achieving accuracies of 99.85%for the two-class,98.70%for the three-class,and 98.96%for the five-class datasets.
文摘In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R235)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4340237DSR06).
文摘The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources.The developments of artificial intelligence(AI)and machine learning(ML)models assist in the effectual design of medical data classification models.Therefore,this article concentrates on the development of optimal Stacked Long Short Term Memory Sequence-toSequence Autoencoder(OSAE-LSTM)model for biomedical data classification.The presented OSAE-LSTM model intends to classify the biomedical data for the existence of diseases.Primarily,the OSAE-LSTM model involves min-max normalization based pre-processing to scale the data into uniform format.Followed by,the SAE-LSTM model is utilized for the detection and classification of diseases in biomedical data.At last,manta ray foraging optimization(MRFO)algorithm has been employed for hyperparameter optimization process.The utilization of MRFO algorithm assists in optimal selection of hypermeters involved in the SAE-LSTM model.The simulation analysis of the OSAE-LSTM model has been tested using a set of benchmark medical datasets and the results reported the improvements of the OSAELSTM model over the other approaches under several dimensions.
基金supported by the Key Project of Natural Science Fund of Education Department of Anhui Province under Grant No.KJ2015A058Major Program of Teaching Research of Educational Commission of Anhui Province of China under Grant No.2015zdjy059
文摘Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.
文摘Power transformers in transmission network are utilized for increasing or decreasing the voltage level. Power Transformers fail to connect directly to the consumers that result in the less load fluctuations. Power transformer operation under any abnormal condition decreases the lifetime of the transformer. Power Transformer protection from inrush and internal fault is critical issue in power system because the obstacle lies in the precise and swift distinction between them. Due to the limitation of heterogeneous resources, occurrence of fault poses severe problem. Providing an efficient mechanism to differentiate between faults (i.e. inrush and internal) is the key for efficient information flow. In this paper, the task of detecting inrush and internal fault in power transformers is formulated as an optimization problem which is solved by using Hyperbolic S-Transform Bacterial Foraging Optimization (HS-TBFO) technique. The Gaussian Frequency- based Hyperbolic S-Transform detects the faults at much earlier stage and therefore minimizes the computation cost by applying Cosine Hyperbolic S-Transform. Next, the Bacterial Foraging Optimization (BFO) technique has been proposed and has demonstrated the capability of identifying the maximum number of faults covered with minimum test cases and therefore improving the fault detection efficiency in a wise manner. The HS-TBFO technique is evaluated and validated in various simulation test cases to detect inrush and internal fault in a significant manner. This HS-TBFO technique is investigated based on three phase power transformer embedded in a power system fed from both ends. Results have confirmed that the HS-TBFO technique is capable of categorizing the inrush and internal faults by identifying maximum number of faults with minimum computation cost as compared to the state-of-the-art works.
文摘A significant advantage of medical image processing is that it allows non-invasive exploration of internal anatomy in great detail.It is possible to create and study 3D models of anatomical structures to improve treatment outcomes,develop more effective medical devices,or arrive at a more accurate diagnosis.This paper aims to present a fused evolutionary algorithm that takes advantage of both whale optimization and bacterial foraging optimization to optimize feature extraction.The classification process was conducted with the aid of a convolu-tional neural network(CNN)with dual graphs.Evaluation of the performance of the fused model is carried out with various methods.In the initial input Com-puter Tomography(CT)image,150 images are pre-processed and segmented to identify cancerous and non-cancerous nodules.The geometrical,statistical,struc-tural,and texture features are extracted from the preprocessed segmented image using various methods such as Gray-level co-occurrence matrix(GLCM),Histo-gram-oriented gradient features(HOG),and Gray-level dependence matrix(GLDM).To select the optimal features,a novel fusion approach known as Whale-Bacterial Foraging Optimization is proposed.For the classification of lung cancer,dual graph convolutional neural networks have been employed.A com-parison of classification algorithms and optimization algorithms has been con-ducted.According to the evaluated results,the proposed fused algorithm is successful with an accuracy of 98.72%in predicting lung tumors,and it outper-forms other conventional approaches.
基金supported by the National Natural Science Foundation of China(Nos.61861015,62061013 and 61961013)Key Research and Development Program of Hainan Province(No.ZDYF2019011)+3 种基金National Key Research and Development Program of China(No.2019CXTD400)Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)Scientific Research Setup Fund of Hainan University(No.KYQD(ZR)1731)the Natural Science Foundation High-Level Talent Project of Hainan Province(No.622RC619).
文摘At present,the traditional channel estimation algorithms have the disadvantages of over-reliance on initial conditions and high complexity.The bacterial foraging optimization(BFO)-based algorithm has been applied in wireless communication and signal processing because of its simple operation and strong self-organization ability.But the BFO-based algorithm is easy to fall into local optimum.Therefore,this paper proposes the quantum bacterial foraging optimization(QBFO)-binary orthogonal matching pursuit(BOMP)channel estimation algorithm to the problem of local optimization.Firstly,the binary matrix is constructed according to whether atoms are selected or not.And the support set of the sparse signal is recovered according to the BOMP-based algorithm.Then,the QBFO-based algorithm is used to obtain the estimated channel matrix.The optimization function of the least squares method is taken as the fitness function.Based on the communication between the quantum bacteria and the fitness function value,chemotaxis,reproduction and dispersion operations are carried out to update the bacteria position.Simulation results showthat compared with other algorithms,the estimationmechanism based onQBFOBOMP algorithm can effectively improve the channel estimation performance of millimeter wave(mmWave)massive multiple input multiple output(MIMO)systems.Meanwhile,the analysis of the time ratio shows that the quantization of the bacteria does not significantly increase the complexity.
文摘This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic fields.Introduced in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault foraging.These biologically inspired strategies allow for effective solutions to intricate physical challenges.With its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization problems.Its utility and benefits have found traction in numerous academic sectors.Since its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference proceedings.This paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization challenges.Research trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively.
文摘Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning these parameters a sensitive step to maintain a good performance.On the other hand,and as any other classifier,the performance of SVM is also affected by the input set of features used to build the learning model,which makes the selection of relevant features an important task not only to preserve a good classification accuracy but also to reduce the dimensionality of datasets.In this paper,the MRFO+SVM algorithm is introduced by investigating the recent manta ray foraging optimizer to fine-tune the SVM parameters and identify the optimal feature subset simultaneously.The proposed approach is validated and compared with four SVM-based algorithms over eight benchmarking datasets.Additionally,it is applied to a disease Covid-19 dataset.The experimental results show the high ability of the proposed algorithm to find the appropriate SVM’s parameters,and its acceptable performance to deal with feature selection problem.
基金funded by the University of Rhode Island, Departmem of Biological Sciences to SPGa National Science Foundation grant to Cheryl D. Wilga and SPG (IOS-0542177)
文摘The distribution of organisms within a community can often be determined by the degree of plasticity or degree of specialization of resource acquisition. Resource acquisition is often based on the morphology of an organism, behavior, or a combination of both. Performance tests of feeding can identify the possible interactions that allow one species to better exploit a prey item. Scavenging behaviors in the presence or absence of a competitor were investigated by quantifying prey selection in a trophic generalist, spiny dogfish Squalus acanthias, and atrophic specialist, smooth-hounds Mustelus canis, in order to determine if each shark scavenged according to its jaw morphology. The diet of dogfish consists of small fishes, squid, ctenophores, and bi- valves; they are expected to be nonselective predators. Smooth-hounds primarily feed on crustaceans; therefore, they are predicted to select crabs over other prey types. Prey selection was quantified by ranking each prey item according to the order it was consumed. Dietary shifts were analyzed by comparing the percentage of each prey item selected during solitary versus competitive scavenging. When scavenging alone, dogfish prefer herring and squid, which are easily handled by the cutting dentition of dogfish. Dogfish shift their diet to include a greater number of prey types when scavenging with a competitor. Smooth-hounds scavenge on squid, herring, and shrimp when alone, but increase the number of crabs in the diet when scavenging competitively. Competition causes smooth-hounds to scavenge according to their jaw morphology and locomotor abilities, which enables them to feed on a specialized resource [Current Zoology 56 (1): 100-108 2010].
基金supported in part by the National Natural Science Foundation of China(62073330)in part by the Natural Science Foundation of Hunan Province(2019JJ20021,2020JJ4339)in part by the Scientific Research Fund of Hunan Province Education Department(20B272)。
文摘Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments.
文摘Non-orthogonal multiple access(NOMA)is a strong contender multicarrier waveform technique for the fth generation(5G)communication system.The high peak-to-average power ratio(PAPR)is a serious concern in designing the NOMA waveform.However,the arrangement of NOMA is different from the orthogonal frequency division multiplexing.Thus,traditional reduction methods cannot be applied to NOMA.A partial transmission sequence(PTS)is commonly utilized to minimize the PAPR of the transmitting NOMA symbol.The choice phase aspect in the PTS is the only non-linear optimization obstacle that creates a huge computational complication due to the respective non-carrying sub-blocks in the unitary NOMA symbol.In this study,an efcient phase factor is proposed by presenting a novel bacterial foraging optimization algorithm(BFOA)for PTS(BFOA-PTS).The PAPR minimization is accomplished in a two-stage process.In the initial stage,PTS is applied to the NOMA signal,resulting in the partition of the NOMA signal into an act of sub-blocks.In the second stage,the best phase factor is generated using BFOA.The performance of the proposed BFOA-PTS is thoroughly investigated and compared to the traditional PTS.The simulation outcomes reveal that the BFOA-PTS efciently optimizes the PAPR performance with inconsequential complexity.The proposed method can signicantly offer a gain of 4.1 dB and low complexity compared with the traditional OFDM.
文摘Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining them.The investigation of the histopathological image is a problematic and laborious process that necessitates the expert’s knowledge.At the same time,deep learning(DL)techniques are able to derive features,extract data,and learn advanced abstract data representation.With this view,this paper presents an ensemble of handcrafted with deep learning enabled histopathological image classification(EHCDL-HIC)model.The proposed EHCDLHIC technique initially performs Weiner filtering based noise removal technique.Once the images get smoothened,an ensemble of deep features and local binary pattern(LBP)features are extracted.For the classification process,the bidirectional gated recurrent unit(BGRU)model can be employed.At the final stage,the bacterial foraging optimization(BFO)algorithm is utilized for optimal hyperparameter tuning process which leads to improved classification performance,shows the novelty of the work.For validating the enhanced execution of the proposed EHCDL-HIC method,a set of simulations is performed.The experimentation outcomes highlighted the betterment of the EHCDL-HIC approach over the existing techniques with maximum accuracy of 94.78%.Therefore,the EHCDL-HIC model can be applied as an effective approach for histopathological image classification.
文摘The development of hand gesture recognition systems has gained more attention in recent days,due to its support of modern human-computer interfaces.Moreover,sign language recognition is mainly developed for enabling communication between deaf and dumb people.In conventional works,various image processing techniques like segmentation,optimization,and classification are deployed for hand gesture recognition.Still,it limits the major problems of inefficient handling of large dimensional datasets and requires more time consumption,increased false positives,error rate,and misclassification outputs.Hence,this research work intends to develop an efficient hand gesture image recognition system by using advanced image processing techniques.During image segmentation,skin color detection and morphological operations are performed for accurately segmenting the hand gesture portion.Then,the Heuristic Manta-ray Foraging Optimization(HMFO)technique is employed for optimally selecting the features by computing the best fitness value.Moreover,the reduced dimensionality of features helps to increase the accuracy of classification with a reduced error rate.Finally,an Adaptive Extreme Learning Machine(AELM)based classification technique is employed for predicting the recognition output.During results validation,various evaluation measures have been used to compare the proposed model’s performance with other classification approaches.
文摘A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious task due to the amount of data and the heterogeneity of the data.Thus,in this paper,a Radial Basis Function Neural Network(RBFNN)trained using Manta Ray Foraging Optimization algorithm(MRFO)is proposed.RBFNN is a three-layer network comprising of input,output,and hidden layers that can process large amounts.The trained network can discover hidden data patterns in unseen data.The learning algorithm and seed selection play a vital role in the performance of the network.The seed selection is done using the spectral indices to further improve the performance of the network.The manta ray foraging optimization algorithm is inspired by the intelligent behaviour of manta rays.It emulates three unique foraging behaviours namelys chain,cyclone,and somersault foraging.The satellite images contain enormous amount of data and thus require exploration in large search space.The spiral movement of the MRFO algorithm enables it to explore large search spaces effectively.The proposed method is applied on pre and post flooding Landsat 8 Operational Land Imager(OLI)images of New Brunswick area.The method was applied to identify and classify the land cover changes in the area induced by flooding.The images are classified using the proposed method and a change map is developed using post classification comparison.The change map shows that a large amount of agricultural area was washed away due to flooding.The measurement of the affected area in square kilometres is also performed for mitigation activities.The results show that post flooding the area covered by water is increased whereas the vegetated area is decreased.The performance of the proposed method is done with existing state-of-the-art methods.
文摘Recursion by herbivores is the repeated use of the same site or plants. Recursion by wild animals is rarely investigated but may be ubiquitous. Optimal foraging theory predicts site recursion as a function of the quality of the site, extent of its last use, and time since its last use because these influence site resource status and recovery. We used GPS collars, behaviour and site sampling to investigate recursion to foraging sites for two elephant Elephas maximus borneensis herds in the Lower Kinabatangan Wildlife Sanctuary, Borneo, over a 12 month period. Recursion occurred to 48 out of 87 foraging sites and was most common within 48 hours or between 151-250 days, indicating two different types ofrecursion. Recursion was more likely to occur if the site had previously been occupied for longer. Moreover, the time spent at a site at recursion was the same as the time spent at the site on the first occasion. The number of days that had passed between the first visit and recursion was also positively correlated with how much time was spent at the site at recursion. Habitat type also influenced the intensity of site-use, with more time spent at recursion within riverine/open grass areas along forest margins compared to other habitat types. Recursion is a common behaviour used by the elephants and its pattern suggests it may be a foraging strategy for revisiting areas of greater value. The qualities of recursion sites might usefully be incorporated into landscape management strategies for elephant conservation in the area [Current Zoology 60 (4): 551-559, 2014].
文摘In this paper, the objective of minimum load balancing index (LBI) for the 16-bus distribution system is achieved using bacterial foraging optimization algorithm (BFOA). The feeder reconfiguration problem is formulated as a non-linear optimization problem and the optimal solution is obtained using BFOA. With the proposed reconfiguration method, the radial structure of the distribution system is retained and the burden on the optimization technique is reduced. Test results are presented for the 16-bus sample network, the proposed reconfiguration method has effectively decreased the LBI, and the BFOA technique is efficient in searching for the optimal solution.
基金This work is supported in part by National Natural Science Foundation of China under Grant no.51375368.
文摘Inspired by the foraging behavior of E.coli bacteria,bacterial foraging optimization(BFO)has emerged as a powerful technique for solving optimization problems.However,BFO shows poor performance on complex and high-dimensional optimization problems.In order to improve the performance of BFO,a new dynamic bacterial foraging optimization based on clonal selection(DBFO-CS)is proposed.Instead of fixed step size in the chemotaxis operator,a new piecewise strategy adjusts the step size dynamically by regulatory factor in order to balance between exploration and exploitation during optimization process,which can improve convergence speed.Furthermore,reproduction operator based on clonal selection can add excellent genes to bacterial populations in order to improve bacterial natural selection and help good individuals to be protected,which can enhance convergence precision.Then,a set of benchmark functions have been used to test the proposed algorithm.The results show that DBFO-CS offers significant improvements than BFO on convergence,accuracy and robustness.A complex optimization problem of model reduction on stable and unstable linear systems based on DBFO-CS is presented.Results show that the proposed algorithm can efficiently approximate the systems.
基金supported by grants from the China National Offshore Oil Corporation foundation(grant number CF-MEEC/TR/2021-12)the Central Public-interest Scientific Institution Basal Research Fund,CAFS(grant number 2019ZD0201)the Bureau of Fisheries,the Ministry of Agriculture and Rural Affairs of the People’s Republic of China(grant number 125C0505),The research project was permitted by the Ministry of Agriculture and Rural Affairs of the People’s Republic of China.All procedures strictly adhered to Chinese law and ethical guidelines.
文摘The associations between feeding activities and environmental variables inform animal feeding tactics that max-imize energetic gains by minimizing energy costs while maximizing feeding success.Relevant studies in aquatic animals,particularly marine mammals,are scarce due to difficulties in the observation of feeding behaviors in aquatic environments.This data scarcity concurrently hinders ecosystem-basedfishery management in the context of small toothed-cetacean conservation.In the present study,a passive acoustic monitoring station was deployed in an East Asianfinless porpoise habitat in Laizhou Bay to investigate potential relationships between East Asianfinless porpoises and their prey.The data revealed that porpoises were acoustically present nearly every day during the survey period.Porpoise detection rates differed between spring and autumn in concert with activities offish choruses.During spring,fish choruses were present throughout the afternoon,and this was the time when porpoise vocalizations were the most frequently detected.During autumn,whenfish choruses were absent,porpoise detec-tion rates decreased,and diurnal patterns were not detected.The close association betweenfish choruses andfin-less porpoise activities implies an“eavesdropping”feeding strategy to maximize energetic gains,similar to other toothed cetaceans that are known to engage similar feeding strategies.Underwater noise pollution,particularly those maskingfish choruses,could interruptfinless porpoises’feeding success.Fisheries competing soniferousfishes withfinless porpoise could impactfinless porpoise viability through ecosystem disruption,in addition tofishing gear entanglement.