Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield ...Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield of pyridine and 3-picoline decreased, but the selectivity of pyridine over 3-picoline increased compared to turbulent fluidized-bed reactor. Based on experimental data, a modified kinetic model was used for the determination of optimal operating condition for riser reactor. The optimal operating condition of riser reactor given by this modified model was as follows: The reaction temperature of 755 K, catalyst to feedstock ratio (CTFR) of 87, residence timeof3.8sandinitialacetaldehydesconcentrationof0.0029mol.L-1 (acetaldehydes to formaldehydes ratio by mole (ATFR) of 0.65 and ammonia to aldehydes ratio by mole (ATAR) of 0.9, water contention of 63wt% (formaldehyde solution)).展开更多
Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analys...Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.展开更多
The water content of proton exchange membrane fuel cells(PEMFCs)affects the transport of reactants and the conductivity of the membrane.Effective water management measures can improve the performance and extend the li...The water content of proton exchange membrane fuel cells(PEMFCs)affects the transport of reactants and the conductivity of the membrane.Effective water management measures can improve the performance and extend the lifespan of the fuel cell.The water management state of the stack is influenced by various external operating conditions,and optimizing the combination of these conditions can improve the water management state within the stack.Considering that the stack's internal resistance can reflect its water management state,this study first establishes an internal resistance-operating condition model that considers the coupling effect of temperature and humidity to determine the variation trend of total resistance and stack humidity with single-factor operating conditions.Subsequently,the water management state optimization method based on the ANN-HGPSO algorithm is proposed,which not only quantitatively evaluates the influence weights of different operating conditions on the stack's internal resistance but also efficiently and accurately obtains the optimal combination of five operating conditions:working temperature,anode gas pressure,cathode gas pressure,anode gas humidity,and cathode gas humidity to achieve the optimal water management state in the stack,within the entire range of current densities.Finally,the response surface experimental results of the stack also validate the effectiveness and accuracy of the ANN-HGPSO algorithm.The method mentioned in this article can provide effective strategies for efficient water management and output performance optimization control of PEMFC stacks.展开更多
The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemi...The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.展开更多
To obtain the optimal operating conditions of a coupled reactor for pyridine synthesis,reactor modeling process is carried out in this paper.During the modeling process,the flow hydrodynamics,heat transfer behavior,in...To obtain the optimal operating conditions of a coupled reactor for pyridine synthesis,reactor modeling process is carried out in this paper.During the modeling process,the flow hydrodynamics,heat transfer behavior,inter-phase mass transfer behavior and reaction kinetics were taken into consideration consequently.Further,a regression program based on least square method was proposed to regress the model parameters.The prediction results agreed well with the experimental results with an average deviation of 5.9%.Finally,by setting suitable aim function,the optimal operating conditions of the coupled reactor for pyridine synthesis were determined.展开更多
基金Supported by the National Basic Research Program of China(973 Program,2012CB215000)
文摘Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield of pyridine and 3-picoline decreased, but the selectivity of pyridine over 3-picoline increased compared to turbulent fluidized-bed reactor. Based on experimental data, a modified kinetic model was used for the determination of optimal operating condition for riser reactor. The optimal operating condition of riser reactor given by this modified model was as follows: The reaction temperature of 755 K, catalyst to feedstock ratio (CTFR) of 87, residence timeof3.8sandinitialacetaldehydesconcentrationof0.0029mol.L-1 (acetaldehydes to formaldehydes ratio by mole (ATFR) of 0.65 and ammonia to aldehydes ratio by mole (ATAR) of 0.9, water contention of 63wt% (formaldehyde solution)).
基金Supported by the National Natural Science Foundation of China(61590924,61673273,61521063)
文摘Exergy indicates the maximal energy that can do work effectively. Different from optimization of product quality or calculation of generic energy conservation in most previous studies, the application of exergy analysis and exergy cost optimization in petrochemical industry is of great economic and environmental significance. Based on the main fractionator in Jiujiang Petrochemical Complex No. 2 FCCU, an enhanced exergy cost optimization under different operating conditions by adjusting set points of temperature and valves opening degree for flow control is studied in this paper in order to reduce exergy cost and improve the quality of energy. A steadystate optimization algorithm to enhance exergy availability and an objective function comprehensively considering exergy loss are proposed. On the basis of ensuring the quality of petroleum products, the economic benefits can be improved by optimizing the controllable variables due to the fact that exergy cost is decreased.
基金supported by the National Key Research and Devel-opment Project of China(2020YFB1506802)the Key Research and Development Project of Guangdong Province(2020B0909040004).
文摘The water content of proton exchange membrane fuel cells(PEMFCs)affects the transport of reactants and the conductivity of the membrane.Effective water management measures can improve the performance and extend the lifespan of the fuel cell.The water management state of the stack is influenced by various external operating conditions,and optimizing the combination of these conditions can improve the water management state within the stack.Considering that the stack's internal resistance can reflect its water management state,this study first establishes an internal resistance-operating condition model that considers the coupling effect of temperature and humidity to determine the variation trend of total resistance and stack humidity with single-factor operating conditions.Subsequently,the water management state optimization method based on the ANN-HGPSO algorithm is proposed,which not only quantitatively evaluates the influence weights of different operating conditions on the stack's internal resistance but also efficiently and accurately obtains the optimal combination of five operating conditions:working temperature,anode gas pressure,cathode gas pressure,anode gas humidity,and cathode gas humidity to achieve the optimal water management state in the stack,within the entire range of current densities.Finally,the response surface experimental results of the stack also validate the effectiveness and accuracy of the ANN-HGPSO algorithm.The method mentioned in this article can provide effective strategies for efficient water management and output performance optimization control of PEMFC stacks.
基金Supported by the Shanghai Second Polytechnic University Key Discipline Construction-Control Theory & Control Engineering(No.XXKPY1609)the National Natural Science Foundation of China(61422303)+1 种基金Shanghai Talent Development Funding(H200-2R-15111)2017 Shanghai Second Polytechnic University Cultivation Research Program of Young Teachers(02)
文摘The rise in the use of global polyester fiber contributed to strong demand of the Terephthalic acid (TPA). The liquid-phase catalytic oxidation of p-xylene (PX) to TPA is regarded as a critical and efficient chemical process in industry [ 1 ]. PX oxidation reaction involves many complex side reactions, among which acetic acid combustion and PX combustion are the most important. As the target product of this oxidation process, the quality and yield of TPA are of great concern. However, the improvement of the qualified product yield can bring about the high energy consumption, which means that the economic objectives of this process cannot be achieved simulta- neously because the two objectives are in conflict with each other. In this paper, an improved self-adaptive multi-objective differential evolution algorithm was proposed to handle the multi-objective optimization prob- lems. The immune concept is introduced to the self-adaptive multi-objective differential evolution algorithm (SADE) to strengthen the local search ability and optimization accuracy. The proposed algorithm is successfully tested on several benchmark test problems, and the performance measures such as convergence and divergence metrics are calculated. Subsequently, the multi-objective optimization of an industrial PX oxidation process is carried out using the proposed immune self-adaptive multi-objective differential evolution algorithm (ISADE). Optimization results indicate that application oflSADE can greatly improve the yield of TPA with low combustion loss without degenerating TA quality.
基金supports from the Natural Science Foundation of Henan(grant No.202300410063)the National Natural Science Foundation of China(grant Nos.91834303,21961132026)+1 种基金the First-class Discipline Construction Project of Henan University(grant No.2019YLZDCG01)the interdisciplinary Research for First-class Discipline Construction Project of Henan University(grant No.2019 YLXKJC04).
文摘To obtain the optimal operating conditions of a coupled reactor for pyridine synthesis,reactor modeling process is carried out in this paper.During the modeling process,the flow hydrodynamics,heat transfer behavior,inter-phase mass transfer behavior and reaction kinetics were taken into consideration consequently.Further,a regression program based on least square method was proposed to regress the model parameters.The prediction results agreed well with the experimental results with an average deviation of 5.9%.Finally,by setting suitable aim function,the optimal operating conditions of the coupled reactor for pyridine synthesis were determined.