An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In par...This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the int...The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.展开更多
In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The ...In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The conditions for exhibiting boundary and interior layers are given, and the corresponding asymptotic expansions of solutions are constructed.展开更多
First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of ...First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.展开更多
This is the first paper on symmetry classification for ordinary differential equations(ODEs)based on Wu’s method.We carry out symmetry classification of two ODEs,named the generalizations of the Kummer-Schwarz equati...This is the first paper on symmetry classification for ordinary differential equations(ODEs)based on Wu’s method.We carry out symmetry classification of two ODEs,named the generalizations of the Kummer-Schwarz equations which involving arbitrary function.First,Lie algorithm is used to give the determining equations of symmetry for the given equations,which involving arbitrary functions.Next,differential form Wu’s method is used to decompose determining equations into a union of a series of zero sets of differential characteristic sets,which are easy to be solved relatively.Each branch of the decomposition yields a class of symmetries and associated parameters.The algorithm makes the classification become direct and systematic.Yuri Dimitrov Bozhkov,and Pammela Ramos da Conceição have used the Lie algorithm to give the symmetry classifications of the equations talked in this paper in 2020.From this paper,we can find that the differential form Wu’s method for symmetry classification of ODEs with arbitrary function(parameter)is effective,and is an alternative method.展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which ...This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary展开更多
In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of ne...In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of necessary conditions for resonance has beenoffered.展开更多
In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
Cyber-physical systems (CPS) represent a class of complex engineered systems where functionality and behavior emerge through the interaction between the computational and physical domains. Simulation provides design e...Cyber-physical systems (CPS) represent a class of complex engineered systems where functionality and behavior emerge through the interaction between the computational and physical domains. Simulation provides design engineers with quick and accurate feedback on the behaviors generated by their designs. However, as systems become more complex, simulating their behaviors becomes computation all complex. But, most modern simulation environments still execute on a single thread, which does not take advantage of the processing power available on modern multi-core CPUs. This paper investigates methods to partition and simulate differential equation-based models of cyber-physical systems using multiple threads on multi-core CPUs that can share data across threads. We describe model partitioning methods using fixed step and variable step numerical in-tegration methods that consider the multi-layer cache structure of these CPUs to avoid simulation performance degradation due to cache conflicts. We study the effectiveness of each parallel simu-lation algorithm by calculating the relative speedup compared to a serial simulation applied to a series of large electric circuit models. We also develop a series of guidelines for maximizing performance when developing parallel simulation software intended for use on multi-core CPUs.展开更多
Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency ...A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
The data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management(PHM). However...The data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management(PHM). However, most data-driven models are still black-box models that cannot be interpreted. In this study, we use the neural ordinary differential equations(ODEs), especially the inherent computational relationships of a system added to the loss function calculation, to approximate the governing equations. In addition, a new strategy for identifying the local parameters of the system is investigated, which can be utilized for system parameter identification and damage detection. The numerical and experimental examples presented in the paper demonstrate that the strategy has high accuracy and good local parameter identification. Moreover, the proposed method has the advantage of being interpretable. It can directly approximate the underlying governing dynamics and be a worthwhile strategy for system identification and PHM.展开更多
We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear ...We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.展开更多
Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the non...Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the nonlinear alternative of Leray-Schauder method.展开更多
This paper presents Tau-collocation approximation approach for solving first and second orders ordinary differential equations. We use the method in the stimulation of numerical techniques for the approximate solution...This paper presents Tau-collocation approximation approach for solving first and second orders ordinary differential equations. We use the method in the stimulation of numerical techniques for the approximate solution of linear initial value problems (IVP) in first and second order ordinary differential equations. The resulting numerical evidences show the method is adequate and effective.展开更多
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
基金supported by the National Natural Science Foundation of China[grant numbers 41375110,11471244]
文摘The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.
文摘In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The conditions for exhibiting boundary and interior layers are given, and the corresponding asymptotic expansions of solutions are constructed.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.
文摘This is the first paper on symmetry classification for ordinary differential equations(ODEs)based on Wu’s method.We carry out symmetry classification of two ODEs,named the generalizations of the Kummer-Schwarz equations which involving arbitrary function.First,Lie algorithm is used to give the determining equations of symmetry for the given equations,which involving arbitrary functions.Next,differential form Wu’s method is used to decompose determining equations into a union of a series of zero sets of differential characteristic sets,which are easy to be solved relatively.Each branch of the decomposition yields a class of symmetries and associated parameters.The algorithm makes the classification become direct and systematic.Yuri Dimitrov Bozhkov,and Pammela Ramos da Conceição have used the Lie algorithm to give the symmetry classifications of the equations talked in this paper in 2020.From this paper,we can find that the differential form Wu’s method for symmetry classification of ODEs with arbitrary function(parameter)is effective,and is an alternative method.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
文摘This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary
基金Projects Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of necessary conditions for resonance has beenoffered.
文摘In this paper, we construct a uniform second-order difference scheme for a class of boundary value problems of fourth-order ordinary differential equations. Finally, a numerical example is given.
文摘Cyber-physical systems (CPS) represent a class of complex engineered systems where functionality and behavior emerge through the interaction between the computational and physical domains. Simulation provides design engineers with quick and accurate feedback on the behaviors generated by their designs. However, as systems become more complex, simulating their behaviors becomes computation all complex. But, most modern simulation environments still execute on a single thread, which does not take advantage of the processing power available on modern multi-core CPUs. This paper investigates methods to partition and simulate differential equation-based models of cyber-physical systems using multiple threads on multi-core CPUs that can share data across threads. We describe model partitioning methods using fixed step and variable step numerical in-tegration methods that consider the multi-layer cache structure of these CPUs to avoid simulation performance degradation due to cache conflicts. We study the effectiveness of each parallel simu-lation algorithm by calculating the relative speedup compared to a serial simulation applied to a series of large electric circuit models. We also develop a series of guidelines for maximizing performance when developing parallel simulation software intended for use on multi-core CPUs.
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
文摘A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
基金Project supported by the National Natural Science Foundation of China (Nos. 12132010 and12021002)the Natural Science Foundation of Tianjin of China (No. 19JCZDJC38800)。
文摘The data-driven methods extract the feature information from data to build system models, which enable estimation and identification of the systems and can be utilized for prognosis and health management(PHM). However, most data-driven models are still black-box models that cannot be interpreted. In this study, we use the neural ordinary differential equations(ODEs), especially the inherent computational relationships of a system added to the loss function calculation, to approximate the governing equations. In addition, a new strategy for identifying the local parameters of the system is investigated, which can be utilized for system parameter identification and damage detection. The numerical and experimental examples presented in the paper demonstrate that the strategy has high accuracy and good local parameter identification. Moreover, the proposed method has the advantage of being interpretable. It can directly approximate the underlying governing dynamics and be a worthwhile strategy for system identification and PHM.
基金the National Natural Science Foundation of China(No.70 0 710 42 and No.60 0 73 0 43 )
文摘We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.
文摘Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the nonlinear alternative of Leray-Schauder method.
文摘This paper presents Tau-collocation approximation approach for solving first and second orders ordinary differential equations. We use the method in the stimulation of numerical techniques for the approximate solution of linear initial value problems (IVP) in first and second order ordinary differential equations. The resulting numerical evidences show the method is adequate and effective.