To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.Th...To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed.展开更多
We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overl...We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overlying strata in paste backfill mining, structural movement of the stope strata as well as the stope stress distribution laws. Furthermore, authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining. The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining. Compared with the roof caving mining, the degree of stress concentration and area of influence in the paste filling stope were apparently smaller. And the degree of destruction and area of the overlying strata decreased prominently. Also, there was no apparent strata behavior in the working face. Lastly, the filling ratio was the key to control the movement and deformation of the overlying strata. Combined with a specific engineering example, the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining.展开更多
基金provided by the National Natural Science Foundation of China(No.51074165)the NationalKey Basic Research Program of China(No.2013CB227905)the Qing-Lan Project of China Scholarship Council
文摘To analyze the overlying strata movement law of recovering room mining standing pillars with solid backfilling.Physical simulation experiments with sponge and wood as the backfilling simulation material were tested.The results show that:(i) The covering-rock mechanics of the overly strata comes from "two-arch structures + hinged girder + bend beam" to "backfilling material + hinged girder + bent beam" by increasing the fill ratio from 0%to 85%,the beginning of overlying strata movement appears later and the total duration of subsidence velocity increased from zero to the highest value increases.The trend of "single polarization" of the subsidence velocity curves becomes noticeable and the velocity variation trend becomes stable,(ii) The equiponderate aeolian sand was added to improve the anti-pressure ability of the loess,and the corresponding ground processing & transportation system was designed.
基金supported by the National Natural Science Foundation of China (No. 50774077)the Special Funds of Universities Outstanding Doctoral Dissertation (No. 200760)+1 种基金the Independent Research Funding of the State Key Laboratory of Coal Resources and Mine Safety (No. SKLCRSM10X02)the Fundamental Research Funds for the Central Universities (Nos. 2010QNA31 and2010QNA32)
文摘We combined the similar simulation with numerical simulation to analyze the movement and deforma- tion features of overlying strata caused by paste backfill mining, study the movement and deformation laws of the overlying strata in paste backfill mining, structural movement of the stope strata as well as the stope stress distribution laws. Furthermore, authors also explored the key factors to the movement and deformation of the overlying strata in paste backfill mining. The results indicate that a caving zone existed in the bending zone only in the overlying strata of the paste backfill mining. Compared with the roof caving mining, the degree of stress concentration and area of influence in the paste filling stope were apparently smaller. And the degree of destruction and area of the overlying strata decreased prominently. Also, there was no apparent strata behavior in the working face. Lastly, the filling ratio was the key to control the movement and deformation of the overlying strata. Combined with a specific engineering example, the author proved the reliability of the simulation results and provided a theoretical basis for the further extension of the paste backfill mining.