Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenes...The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin(SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influencea A osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines"from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin(OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2(LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain.We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.展开更多
Spermatogenesis is a complex process regulated by endocrine and testicular paracrine/autocrine factors. Gonadotropins are involved in the regulation of several testicular paracrine factors, mainly of the IL-1 family a...Spermatogenesis is a complex process regulated by endocrine and testicular paracrine/autocrine factors. Gonadotropins are involved in the regulation of several testicular paracrine factors, mainly of the IL-1 family and testicular hormones. Testicular cytokines and growth factors (such as IL-1, IL-6, TNF, IFN-γ, LIF and SCF) were shown to affect both the germ cell proliferation and the Leydig and Sertoli cells functions and secretion. Cytokines and growth factors are produced by immune cells and in the interstitial and seminiferous tubular compartments by various testicular cells, including Sertoli, Leydig, peritubular cells, spermatogonia, differentiated spermatogonia and even spermatozoa. Corresponding cytokine and growth factor receptors were demonstrated on some of the testicular cells. These cytokines also control the secretion of the gonadotropins and testosterone in the testis. Under pathological conditions the levels of pro-inflammatory cytokines are increased and negatively affected spermatogenesis. Thus, the expression levels and the mechanisms involved in the regulation of testicular paracrine/autocrine factors should be considered in future therapeutic strategies for male infertility.展开更多
AIM: To explore the role of SF/HGF-Met autocrine and paracrine in metastasis of hepatocellular carcinoma (HCC). METHODS: SF/HGF and c-met transcription and protein expression in HCC were examined by RT-PCR and Western...AIM: To explore the role of SF/HGF-Met autocrine and paracrine in metastasis of hepatocellular carcinoma (HCC). METHODS: SF/HGF and c-met transcription and protein expression in HCC were examined by RT-PCR and Western Blot in 4 HCC cell lines, including HepG2, Hep3B, SMMC7721 and MHCC-1, the last cell line had a higher potential of metastasis. sf/hgf cDNA was transfected by the method of Lipofectin into SMMC7721. SF/HGF and c-met antibody were used to stimulate and block SF/HGF-c-met signal transduction. Cell morphology, mobility, and proliferation were respectively compared by microscopic observation, wound healing assay and cell growth curve. RESULTS: HCC malignancy appeared to be relative to its met-SF/HGF expression. In MHCC-1, c-met expression was much stronger than that in other cell lines with lower potential of metastasis and only SF/HGF autocrine existed in MHCC-1. After sf/hgf cDNA transfection or conditioned medium of MHCC-1 stimulation, SMMC7721 changed into elongated morphology, and the abilities of proliferation (P 【 0.05) and mobility increased. Such bio-activity could be blocked by c-met antibody (P 【 0.05). CONCLUSION: The system of SF/HGF-c-met autocrine and paracrine played an important role in development and metastasis potential of HCC. Inhibition of SF/HGF-c-met signal transduction system may reduce the growth and metastasis of HCC.展开更多
Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiat...Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 106) were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR), eIF-4E binding protein 1 and $6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the re- generation and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.展开更多
Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age...Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age-related macular degeneration and inherited and ischemic retinal diseases the most relevant. These diseases greatly impact patients' daily lives, with accompanying marked social and economic consequences. However, the currently available treatments only delay the onset or slow progression of visual impairment, and there are no cures for these photoreceptor diseases. Therefore, new therapeutic strategies are being investigated, such as gene therapy, optogenetics, cell replacement, or cell-based neuroprotection. Specifically, stem cells can secrete neurotrophic, immunomodulatory, and anti-angiogenic factors that potentially protect and preserve retinal cells from neurodegeneration. Further, neuroprotection can be used in different types of retinal degenerative diseases and at different disease stages, unlike other potential therapies. This review summarizes stem cell-based paracrine neuroprotective strategies for photoreceptor degeneration, which are under study in clinical trials, and the latest preclinical studies. Effective retinal neuroprotection could be the next frontier in photoreceptor diseases, and the development of novel neuroprotective strategies will address the unmet therapeutic needs.展开更多
This is first report about the simultaneous over-expression of both Insulin-like growth factor (IGF- I ) and its receptor (IGF- I R) at mRNA level in human primary hepatic Cancer (PHC). In 10 PHC samples from China, I...This is first report about the simultaneous over-expression of both Insulin-like growth factor (IGF- I ) and its receptor (IGF- I R) at mRNA level in human primary hepatic Cancer (PHC). In 10 PHC samples from China, IGF-I and IGF- I R were both over-expressed, whereas only a background signal was detected in normal liver. In 5 pairs of PHC and its non- tumorous adjacent liver tissues from South Africa, IGF- I and IGF- I R were also over-expressed in PHC. mRNA expression of IGF- I in all 5 cases and IGF- I R in 4 of 5 cases were higher in cancer than non- tumorous adjacent liver tissues. These results strongly implicate that an autocrine and/ or paracrine mechanism might be Involved in formation and progression of PHC.展开更多
White adipose tissue(WAT) stores energy and also plays an important endocrine role in producing adipokines for communication with the peripheral and central nervous system. WAT consists of the major lipogenic unilocul...White adipose tissue(WAT) stores energy and also plays an important endocrine role in producing adipokines for communication with the peripheral and central nervous system. WAT consists of the major lipogenic unilocular adipocytes and the minor populations of beige and brite multilocular adipocytes. These multilocular adipocytes express thermogenic genes and have phenotypic similarity with thermogenic brown adipose tissue. According to a current paradigm, multilocular adipocytes have a thermogenic function in WAT. In this mini review, we discuss data revealing heterogeneity among multilocular cell subsets in WAT and their functions beyond thermogenesis. We propose a hypothetical neuroendocrine role for multilocular adipocytes subsets in the formation of adaptive sensory-sympathetic circuits between the central nervous system and adipose tissue, which activate lipolysis and thermogenesis in WAT in high energy demand situations.展开更多
The progressive loss of dopaminergic neurons in the ventral mesencephalon is the main pathological hallmark of Parkinson’s disease(PD).Drugs currently available only alleviate the principal symptomatic motor-relate...The progressive loss of dopaminergic neurons in the ventral mesencephalon is the main pathological hallmark of Parkinson’s disease(PD).Drugs currently available only alleviate the principal symptomatic motor-related disturbances and their benefit is counteracted by side effects in the long time.展开更多
Differentiated embryonic stem cells (ESC) can ameliorate lung inflammation and fibrosis in animal lung injury models;therefore, ESC, or their products, could be candidates for regenerative therapy for incurable lung d...Differentiated embryonic stem cells (ESC) can ameliorate lung inflammation and fibrosis in animal lung injury models;therefore, ESC, or their products, could be candidates for regenerative therapy for incurable lung diseases, such as idiopathic pulmonary fibrosis (IPF). In this study, we have investigated the paracrine effect of differentiated and undifferentiated human ESC on alveolar epithelial cell (AEC) wound repair. hESC line, SHEF-2 cells were differentiated with Activin treatment for 22 days in an embryoid body (EB) suspension culture. Conditioned media (CM) which contain cell secretory factors were collected at different time points of differentiation. CM were then tested onin vitro?wound repair model with human type II AEC line, A549 cells (AEC). Our study demonstrated that CM originated from undifferentiated hESC significantly inhibited AEC wound repair when compared to the control. Whereas, CM originated from Activin-directed hESC differentiated cell population demonstrated a differential reparative effect on AEC wound repair model. CM obtained from Day-11 of differentiation significantly enhanced AEC wound repair in comparison to CM collected from pre- and post-Day-11 of differentiation. Day-11 CM enhanced AEC wound repair through significant stimulation of cell migration and cell proliferation. RT-PCR and immunocytochemistry confirmed that Day-11 CM was originated form a mixed population of endodermal/mesodermal differentiated hESC. This report suggests a putative paracrine-mediated epithelial injury healing mechanism by hESC secreted products, which is valuable in the development of novel stem cell-based therapeutic strategies.展开更多
Mesenchymal stem cells(MSCs),the most well-studied cell type in the field of stem cell therapy,have multi-lineage differentiation and self-renewal potential.MsC-based thera-pies have been used to treat diverse disease...Mesenchymal stem cells(MSCs),the most well-studied cell type in the field of stem cell therapy,have multi-lineage differentiation and self-renewal potential.MsC-based thera-pies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function.An increasing body of evidence demonstrates that paracrine func-tion is central to the effects of MsC-based therapy.Growth factors,cytokines,chemokines,extracellular matrix components,and extracellular vehicles all contribute to the beneficial ef-fects of MSCs on tissue regeneration and repair.The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior.In this review,we discuss the bioactive substances secreted by MsCs depending on the microenvironment and biological behavior and their regulatory mechanisms,which explain their potential to treat human diseases,to provide new ideas for further research and clinical cell-free therapy.展开更多
The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy.In this study,the stemness and functionality of adipose stem cells derived from typ...The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy.In this study,the stemness and functionality of adipose stem cells derived from type 1 diabetic donors(T1DM-ASC)were enhanced by treatment with Cu(II)-baicalein microflowers(Cu-MON).After treatment with Cu-MON,T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion.Among the top 13 differentially expressed genes between T1DM-ASC and Cu-MON-treated T1DM-ASC(CMTA),some genes were also expressed in HUVEC,Myoblast,Myofibroblast,and Vascular Smooth Muscle cells,inferring the common role of these cell types.In vivo experiments showed that CMTA had the same therapeutic effect as adipose-derived stem cells from non-diabetic donors(ND-ASC)at a 15%cell dose,greatly reducing the treatment cost.Taken together,these findings suggest that Cu-MON promoted angiogenesis by promoting the stemness and functionality of T1DM-ASC and influencing multiple overall repair processes,including paracrine effects.展开更多
The microenvironment of the wound bed is essential in the regulation of wound repair.In this regard,strategies that provide a repairing favorable microenvironment may effectively improve healing outcomes.Herein,we att...The microenvironment of the wound bed is essential in the regulation of wound repair.In this regard,strategies that provide a repairing favorable microenvironment may effectively improve healing outcomes.Herein,we attempted to use electrical stimulation(ES)to boost the paracrine function of adipose-derived stem cells from rats(rASCs).By examining the concentrations of two important growth factors,VEGF and PDGF-AA,in the cell culture supernatant,we found that ES,especially 5𝜇A ES,stimulated rASCs to produce more paracrine factors(5𝜇A-PFs).Further studies showed that ES may modulate the paracrine properties of rASCs by upregulating the levels of TRPV2 and TRPV3,thereby inducing intracellular Ca^(2+) influx.To deliver the PFs to the wound to effectively improve the wound microenvironment,we prepared a heparinized PGA host-guest hydrogel(PGA-Hp hydrogel).Moreover,PGA-Hp hydrogel loaded with 5𝜇A-PFs effectively accelerated the repair process of the full-thickness wound model in rats.Our findings revealed the effects of ES on the paracrine properties of rASCs and highlighted the potential application of heparinized PGA host-guest hydrogels loaded with PFs derived from electrically stimulated rASCs in wound repair.展开更多
Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis an...Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.展开更多
Paracrine pathway activities are being increasingly recognized as instrumental regulatory mechanisms of epithelial-stromal interactions that play important roles in physiological and pathological self-renewal of stem ...Paracrine pathway activities are being increasingly recognized as instrumental regulatory mechanisms of epithelial-stromal interactions that play important roles in physiological and pathological self-renewal of stem cells and in the initiation and maintenance of neoplastic tumor development.Stromal-specific Hedgehog(Hh)responses and epithelial-associated Wnt pathway activities have been recently appreciated as important factors in stem cell self-renewal and carcinogenesis.Furthermore,Hh and Wnt pathways frequently crosstalk with each other to regulate the growth of epithelial cells in a context-dependent manner.Because small molecule modulators of Hh and Wnt pathway activities are readily available,emerging roles of Hh-Wnt pathway crosstalk in epithelial-stromal interactions will shed light on the development of regenerative and anti-cancer medicines.展开更多
Objective To prove that juxtacrine and paracrine signaling are essential in the culture of spermatogonial stem cells (SSCs) with Sertoli cell feeder layer in vitro. Methods Mice aged 7 d were chosen to harvest teste...Objective To prove that juxtacrine and paracrine signaling are essential in the culture of spermatogonial stem cells (SSCs) with Sertoli cell feeder layer in vitro. Methods Mice aged 7 d were chosen to harvest testes. A two-step enzyme digestion method was applied in testis suspension. The SSCs and Sertoli cells were separated by adherence distinguishing methods and biologically identified by immunofluorescence and Oil Red 0 staining methods. Flow cytometry was used to analyze purity of SSCs. Three groups were constructed according to different culture conditions. SSC and Sertoli cell co-culture group, SSC conditional culture group and SSC routine culture group. The conditional medium was collected from supernate of culture Sertoli cell in vitro and double-concentrated with DMEM/F12 and fetal bovine serum in a proportion of 4.5 : 4.5 : 1. The routine medium was DMEM/F12 containing 10% fetal bovine serum. Adherence rates were measured by Trypan blue staining. Absorbance of SSCs of each group was measured by MTT assay and proliferation curves shown to demonstrate proliferative features of SSCs. Proliferative features and colony formation were observed by inverted microscope. With 24 h difference in adherence rates, proliferations were compared and analyzed.Results The adherence rate of co-culture group was greater than that in the others(P〈0.05), with insignificant difference in conditional culture group and routine group (P〉0. 05). SSCs of co-culture group showed stable proliferation immediately following inoculation..4 stable colony formed within 7-10 d and maintained for 30 d. SSCs in conditional culture group and routine group decreased rapidly following transient proliferation. Conclusion The actions of SSCs in Sertoli cell cultures in vitro depended on both juxtacrine and paracrine signaling, Sertoli cell paraerine signaling was unable to promote SSC adherence and proliferation alone.展开更多
Metabolic-dysfunction-associated fatty liver disease(MAFLD)is a group of highly heterogeneous multi-system diseases,which is closely related to metabolic dysfunction and is one of the most important public health prob...Metabolic-dysfunction-associated fatty liver disease(MAFLD)is a group of highly heterogeneous multi-system diseases,which is closely related to metabolic dysfunction and is one of the most important public health problems in the world.Studies have shown that paracrine fibroblast growth factors(FGFs)play an important role in the occurrence and development of MAFLD by regulating glucose and lipid metabolism,inflammation,and fibrosis.This article reviews the latest progress in understanding of the distribution,function,and metabolic regulation of paracrine FGFs,which paves the way for future FGF-based therapies targeting MAFLD.展开更多
Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to b...Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to be safe as a cellular treatment,they have usually been therapeutically ineffective in human diseases.In fact,in many clinical trials it has been shown that MSCs have moderate or poor efficacy.This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs.Recently,specific priming strategies have been used to improve the therapeutic properties of MSCs.In this review,we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs.We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes.Particularly,while hypoxic priming can be used primarily for the treatment of acute diseases,inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders.The shift in approach from regeneration to inflammation implies,in MSCs,a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways.The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.展开更多
Mesenchymal stem cell(MSC)therapy is entering a challenging phase after completion of many preclinical and clinical trials.Among the major hurdles encountered in MSC therapy are inconsistent stem cell potency,poor cel...Mesenchymal stem cell(MSC)therapy is entering a challenging phase after completion of many preclinical and clinical trials.Among the major hurdles encountered in MSC therapy are inconsistent stem cell potency,poor cell engraftment and survival,and age/disease-related host tissue impairment.The recognition that MSCs primarily mediate therapeutic benefits through paracrine mechanisms independent of cell differentiation provides a promising framework for enhancing stem cell potency and therapeutic benefits.Several MSC priming approaches are highlighted,which will likely allow us to harness the full potential of adult stem cells for their future routine clinical use.展开更多
The critical role played by stroma-epithelium crosstalk in carcinogenesis and progression of prostate cancer has been increasingly recognized. These interactions are mediated by a variety of paracrine factors secreted...The critical role played by stroma-epithelium crosstalk in carcinogenesis and progression of prostate cancer has been increasingly recognized. These interactions are mediated by a variety of paracrine factors secreted by cancer cells and/or stromal cells. In human prostate cancer, reactive stroma is characterized by an increase in myofibroblasts and a corresponding amplification of extracellular matrix production and angiogenesis. Permanent genetic mutations have been reported in stromal cells as well as in tumour cells. Transforming growth factor-J3, vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor signalling pathways are involved in the process of angiogenesis, whereas hepatocyte growth factor, insulin-like growth factor-l, epidermal growth factor, CXC12 and Interleukin-6 play active roles in the progression, androgen-independent conversion and distal metastasis of prostate cancer. Some soluble factors have reciprocal interactions with androgens and the androgen receptor (AR), and can even activate AR in the absence of the androgen ligand. In this article, we review the complex interactions between cancer cells and the surrounding microenvironment, and discuss the potential therapeutic targets in the stromal compartment of prostate cancer.展开更多
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
基金supported in part by grants from 973 Program from the Chinese Ministry of Science and Technology (MOST) (2014CB964704 and 2015CB964503)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB19000000)the National Natural Science Foundation of China (NSFC) (31371463, 81672119, and 81725010)
文摘The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes,and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin(SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influencea A osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines"from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin(OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2(LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain.We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
文摘Spermatogenesis is a complex process regulated by endocrine and testicular paracrine/autocrine factors. Gonadotropins are involved in the regulation of several testicular paracrine factors, mainly of the IL-1 family and testicular hormones. Testicular cytokines and growth factors (such as IL-1, IL-6, TNF, IFN-γ, LIF and SCF) were shown to affect both the germ cell proliferation and the Leydig and Sertoli cells functions and secretion. Cytokines and growth factors are produced by immune cells and in the interstitial and seminiferous tubular compartments by various testicular cells, including Sertoli, Leydig, peritubular cells, spermatogonia, differentiated spermatogonia and even spermatozoa. Corresponding cytokine and growth factor receptors were demonstrated on some of the testicular cells. These cytokines also control the secretion of the gonadotropins and testosterone in the testis. Under pathological conditions the levels of pro-inflammatory cytokines are increased and negatively affected spermatogenesis. Thus, the expression levels and the mechanisms involved in the regulation of testicular paracrine/autocrine factors should be considered in future therapeutic strategies for male infertility.
基金Supported by Natural Science Foundation of China No.39970290
文摘AIM: To explore the role of SF/HGF-Met autocrine and paracrine in metastasis of hepatocellular carcinoma (HCC). METHODS: SF/HGF and c-met transcription and protein expression in HCC were examined by RT-PCR and Western Blot in 4 HCC cell lines, including HepG2, Hep3B, SMMC7721 and MHCC-1, the last cell line had a higher potential of metastasis. sf/hgf cDNA was transfected by the method of Lipofectin into SMMC7721. SF/HGF and c-met antibody were used to stimulate and block SF/HGF-c-met signal transduction. Cell morphology, mobility, and proliferation were respectively compared by microscopic observation, wound healing assay and cell growth curve. RESULTS: HCC malignancy appeared to be relative to its met-SF/HGF expression. In MHCC-1, c-met expression was much stronger than that in other cell lines with lower potential of metastasis and only SF/HGF autocrine existed in MHCC-1. After sf/hgf cDNA transfection or conditioned medium of MHCC-1 stimulation, SMMC7721 changed into elongated morphology, and the abilities of proliferation (P 【 0.05) and mobility increased. Such bio-activity could be blocked by c-met antibody (P 【 0.05). CONCLUSION: The system of SF/HGF-c-met autocrine and paracrine played an important role in development and metastasis potential of HCC. Inhibition of SF/HGF-c-met signal transduction system may reduce the growth and metastasis of HCC.
基金supported by the National Natural Science Foundation of China,No.30370510,30870851,81271401the Joint Fund of National Natural Science Foundation of ChinaNatural Science Foundation of Guangdong Province of China,No.U1032004
文摘Adipose-derived stem cells have been shown to promote peripheral nerve regeneration through the paracrine secretion of neurotrophic factors. However, it is unclear whether these cells can promote myogenic differentiation in muscular dystrophy. Adipose-derived stem cells (6 × 106) were injected into the gastrocnemius muscle of mdx mice at various sites. Dystrophin expression was found in the muscle fibers. Phosphorylation levels of Akt, mammalian target of rapamycin (mTOR), eIF-4E binding protein 1 and $6 kinase 1 were increased, and the Akt/mTOR pathway was activated. Simultaneously, myogenin levels were increased, whereas cleaved caspase 3 and vimentin levels were decreased. Necrosis and fibrosis were reduced in the muscle fibers. These findings suggest that adipose-derived stem cells promote the re- generation and survival of muscle cells by inhibiting apoptosis and fibrosis, thereby alleviating muscle damage in muscular dystrophy.
基金supported by Fundación Carolina,Madrid,SpainFondo Europeo de Desarrollo Regional,Fondo Social Europeo and Consejería de Educación(Grant VA077P17),Junta de Castilla y León,SpainCentro en Red de Medicina Regenerativa y Terapia Celular,Junta de Castilla y León,Spain,respectively
文摘Retinal degenerations are the leading causes of irreversible visual loss worldwide. Many pathologies included under this umbrella involve progressive degeneration and ultimate loss of the photoreceptor cells, with age-related macular degeneration and inherited and ischemic retinal diseases the most relevant. These diseases greatly impact patients' daily lives, with accompanying marked social and economic consequences. However, the currently available treatments only delay the onset or slow progression of visual impairment, and there are no cures for these photoreceptor diseases. Therefore, new therapeutic strategies are being investigated, such as gene therapy, optogenetics, cell replacement, or cell-based neuroprotection. Specifically, stem cells can secrete neurotrophic, immunomodulatory, and anti-angiogenic factors that potentially protect and preserve retinal cells from neurodegeneration. Further, neuroprotection can be used in different types of retinal degenerative diseases and at different disease stages, unlike other potential therapies. This review summarizes stem cell-based paracrine neuroprotective strategies for photoreceptor degeneration, which are under study in clinical trials, and the latest preclinical studies. Effective retinal neuroprotection could be the next frontier in photoreceptor diseases, and the development of novel neuroprotective strategies will address the unmet therapeutic needs.
文摘This is first report about the simultaneous over-expression of both Insulin-like growth factor (IGF- I ) and its receptor (IGF- I R) at mRNA level in human primary hepatic Cancer (PHC). In 10 PHC samples from China, IGF-I and IGF- I R were both over-expressed, whereas only a background signal was detected in normal liver. In 5 pairs of PHC and its non- tumorous adjacent liver tissues from South Africa, IGF- I and IGF- I R were also over-expressed in PHC. mRNA expression of IGF- I in all 5 cases and IGF- I R in 4 of 5 cases were higher in cancer than non- tumorous adjacent liver tissues. These results strongly implicate that an autocrine and/ or paracrine mechanism might be Involved in formation and progression of PHC.
基金supported by NIH grants R21OD017244(to OZ)the National Center for Research Resources UL1RR025755(to OZ and AL)+5 种基金UL1TR001070(to OZ and AL)NCIP30CA16058(OSUCCC)(to OZ and AL)the NIH Roadmap for Medical Research(to OZ and AL)supported by the SEED Grant from College of Education and Human EcologyAccelerator Grant from Office for Technology and CommercializationBrain Injury program from the Ohio State University(to OZ and AL)
文摘White adipose tissue(WAT) stores energy and also plays an important endocrine role in producing adipokines for communication with the peripheral and central nervous system. WAT consists of the major lipogenic unilocular adipocytes and the minor populations of beige and brite multilocular adipocytes. These multilocular adipocytes express thermogenic genes and have phenotypic similarity with thermogenic brown adipose tissue. According to a current paradigm, multilocular adipocytes have a thermogenic function in WAT. In this mini review, we discuss data revealing heterogeneity among multilocular cell subsets in WAT and their functions beyond thermogenesis. We propose a hypothetical neuroendocrine role for multilocular adipocytes subsets in the formation of adaptive sensory-sympathetic circuits between the central nervous system and adipose tissue, which activate lipolysis and thermogenesis in WAT in high energy demand situations.
基金supported by the HANELA Foundation and the Swiss National Science Foundation,No.31003A_135565 and 406340_128124
文摘The progressive loss of dopaminergic neurons in the ventral mesencephalon is the main pathological hallmark of Parkinson’s disease(PD).Drugs currently available only alleviate the principal symptomatic motor-related disturbances and their benefit is counteracted by side effects in the long time.
文摘Differentiated embryonic stem cells (ESC) can ameliorate lung inflammation and fibrosis in animal lung injury models;therefore, ESC, or their products, could be candidates for regenerative therapy for incurable lung diseases, such as idiopathic pulmonary fibrosis (IPF). In this study, we have investigated the paracrine effect of differentiated and undifferentiated human ESC on alveolar epithelial cell (AEC) wound repair. hESC line, SHEF-2 cells were differentiated with Activin treatment for 22 days in an embryoid body (EB) suspension culture. Conditioned media (CM) which contain cell secretory factors were collected at different time points of differentiation. CM were then tested onin vitro?wound repair model with human type II AEC line, A549 cells (AEC). Our study demonstrated that CM originated from undifferentiated hESC significantly inhibited AEC wound repair when compared to the control. Whereas, CM originated from Activin-directed hESC differentiated cell population demonstrated a differential reparative effect on AEC wound repair model. CM obtained from Day-11 of differentiation significantly enhanced AEC wound repair in comparison to CM collected from pre- and post-Day-11 of differentiation. Day-11 CM enhanced AEC wound repair through significant stimulation of cell migration and cell proliferation. RT-PCR and immunocytochemistry confirmed that Day-11 CM was originated form a mixed population of endodermal/mesodermal differentiated hESC. This report suggests a putative paracrine-mediated epithelial injury healing mechanism by hESC secreted products, which is valuable in the development of novel stem cell-based therapeutic strategies.
基金supported by the Natural Science Foundation of Guangdong Province of China(No.2021A1515011623)the Administrator Foundation of Nanfang Hospital(China)(No.2019B021,2020z004)the National Nature Science Foundation of China(No.81971852).
文摘Mesenchymal stem cells(MSCs),the most well-studied cell type in the field of stem cell therapy,have multi-lineage differentiation and self-renewal potential.MsC-based thera-pies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function.An increasing body of evidence demonstrates that paracrine func-tion is central to the effects of MsC-based therapy.Growth factors,cytokines,chemokines,extracellular matrix components,and extracellular vehicles all contribute to the beneficial ef-fects of MSCs on tissue regeneration and repair.The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior.In this review,we discuss the bioactive substances secreted by MsCs depending on the microenvironment and biological behavior and their regulatory mechanisms,which explain their potential to treat human diseases,to provide new ideas for further research and clinical cell-free therapy.
基金National Natural Science Foundation of China(82072080)CAMS Innovation Fund for Medical Sciences(2023-I2M-2-008,2022-I2M-3-002,2021-12M-1-058)+1 种基金supported by Special Program for High-Tech Leader&Teams of Tianjin GovernmentTianjin innovation Promotion Plan Key Innovation Team of Immunreactive Biomaterials.
文摘The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy.In this study,the stemness and functionality of adipose stem cells derived from type 1 diabetic donors(T1DM-ASC)were enhanced by treatment with Cu(II)-baicalein microflowers(Cu-MON).After treatment with Cu-MON,T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion.Among the top 13 differentially expressed genes between T1DM-ASC and Cu-MON-treated T1DM-ASC(CMTA),some genes were also expressed in HUVEC,Myoblast,Myofibroblast,and Vascular Smooth Muscle cells,inferring the common role of these cell types.In vivo experiments showed that CMTA had the same therapeutic effect as adipose-derived stem cells from non-diabetic donors(ND-ASC)at a 15%cell dose,greatly reducing the treatment cost.Taken together,these findings suggest that Cu-MON promoted angiogenesis by promoting the stemness and functionality of T1DM-ASC and influencing multiple overall repair processes,including paracrine effects.
基金supported by the National Natu-ral Science Foundation of China (T2288101,31971266,82272152,22075087)Guangdong Basic and Applied Basic Research Foundation (2022A1515011925)the Key Research and Development Program of Guangzhou (202007020002).
文摘The microenvironment of the wound bed is essential in the regulation of wound repair.In this regard,strategies that provide a repairing favorable microenvironment may effectively improve healing outcomes.Herein,we attempted to use electrical stimulation(ES)to boost the paracrine function of adipose-derived stem cells from rats(rASCs).By examining the concentrations of two important growth factors,VEGF and PDGF-AA,in the cell culture supernatant,we found that ES,especially 5𝜇A ES,stimulated rASCs to produce more paracrine factors(5𝜇A-PFs).Further studies showed that ES may modulate the paracrine properties of rASCs by upregulating the levels of TRPV2 and TRPV3,thereby inducing intracellular Ca^(2+) influx.To deliver the PFs to the wound to effectively improve the wound microenvironment,we prepared a heparinized PGA host-guest hydrogel(PGA-Hp hydrogel).Moreover,PGA-Hp hydrogel loaded with 5𝜇A-PFs effectively accelerated the repair process of the full-thickness wound model in rats.Our findings revealed the effects of ES on the paracrine properties of rASCs and highlighted the potential application of heparinized PGA host-guest hydrogels loaded with PFs derived from electrically stimulated rASCs in wound repair.
文摘Mesenchymal stromal/stem cells(MSCs)have garnered significant attention in the field of regenerative medicine due to their remarkable therapeutic potential.MSCs play a pivotal role in maintaining tissue homeostasis and possess diverse functions in tissue repair and recovery in various organs.These cells are charac-terized by easy accessibility,few ethical concerns,and adaptability to in vitro cultures,making them a valuable resource for cell therapy in several clinical conditions.Over the years,it has been shown that the true therapeutic power of MSCs lies not in cell engraftment and replacement but in their ability to produce critical paracrine factors,including cytokines,growth factors,and exosomes(EXOs),which modulate the tissue microenvironment and facilitate repair and regeneration processes.Consequently,MSC-derived products,such as condi-tioned media and EXOs,are now being extensively evaluated for their potential medical applications,offering advantages over the long-term use of whole MSCs.However,the efficacy of MSC-based treatments varies in clinical trials due to both intrinsic differences resulting from the choice of diverse cell sources and non-standardized production methods.To address these concerns and to enhance MSC therapeutic potential,researchers have explored many priming strategies,including exposure to inflammatory molecules,hypoxic conditions,and three-dimensional culture techniques.These approaches have optimized MSC secretion of functional factors,empowering them with enhanced immunomodulatory,angiogenic,and regenerative properties tailored to specific medical conditions.In fact,various priming strategies show promise in the treatment of numerous diseases,from immune-related disorders to acute injuries and cancer.Currently,in order to exploit the full therapeutic potential of MSC therapy,the most important challenge is to optimize the modulation of MSCs to obtain adapted cell therapy for specific clinical disorders.In other words,to unlock the complete potential of MSCs in regenerative medicine,it is crucial to identify the most suitable tissue source and develop in vitro manipulation protocols specific to the type of disease being treated.
文摘Paracrine pathway activities are being increasingly recognized as instrumental regulatory mechanisms of epithelial-stromal interactions that play important roles in physiological and pathological self-renewal of stem cells and in the initiation and maintenance of neoplastic tumor development.Stromal-specific Hedgehog(Hh)responses and epithelial-associated Wnt pathway activities have been recently appreciated as important factors in stem cell self-renewal and carcinogenesis.Furthermore,Hh and Wnt pathways frequently crosstalk with each other to regulate the growth of epithelial cells in a context-dependent manner.Because small molecule modulators of Hh and Wnt pathway activities are readily available,emerging roles of Hh-Wnt pathway crosstalk in epithelial-stromal interactions will shed light on the development of regenerative and anti-cancer medicines.
基金supported by Key Project Research Grant from Research Development Foundation of Health Bureau of Chongqing(No.2009-2-80)
文摘Objective To prove that juxtacrine and paracrine signaling are essential in the culture of spermatogonial stem cells (SSCs) with Sertoli cell feeder layer in vitro. Methods Mice aged 7 d were chosen to harvest testes. A two-step enzyme digestion method was applied in testis suspension. The SSCs and Sertoli cells were separated by adherence distinguishing methods and biologically identified by immunofluorescence and Oil Red 0 staining methods. Flow cytometry was used to analyze purity of SSCs. Three groups were constructed according to different culture conditions. SSC and Sertoli cell co-culture group, SSC conditional culture group and SSC routine culture group. The conditional medium was collected from supernate of culture Sertoli cell in vitro and double-concentrated with DMEM/F12 and fetal bovine serum in a proportion of 4.5 : 4.5 : 1. The routine medium was DMEM/F12 containing 10% fetal bovine serum. Adherence rates were measured by Trypan blue staining. Absorbance of SSCs of each group was measured by MTT assay and proliferation curves shown to demonstrate proliferative features of SSCs. Proliferative features and colony formation were observed by inverted microscope. With 24 h difference in adherence rates, proliferations were compared and analyzed.Results The adherence rate of co-culture group was greater than that in the others(P〈0.05), with insignificant difference in conditional culture group and routine group (P〉0. 05). SSCs of co-culture group showed stable proliferation immediately following inoculation..4 stable colony formed within 7-10 d and maintained for 30 d. SSCs in conditional culture group and routine group decreased rapidly following transient proliferation. Conclusion The actions of SSCs in Sertoli cell cultures in vitro depended on both juxtacrine and paracrine signaling, Sertoli cell paraerine signaling was unable to promote SSC adherence and proliferation alone.
基金This work was supported by the National Natural Science Foundation of China(Grant number 82070593)。
文摘Metabolic-dysfunction-associated fatty liver disease(MAFLD)is a group of highly heterogeneous multi-system diseases,which is closely related to metabolic dysfunction and is one of the most important public health problems in the world.Studies have shown that paracrine fibroblast growth factors(FGFs)play an important role in the occurrence and development of MAFLD by regulating glucose and lipid metabolism,inflammation,and fibrosis.This article reviews the latest progress in understanding of the distribution,function,and metabolic regulation of paracrine FGFs,which paves the way for future FGF-based therapies targeting MAFLD.
文摘Mesenchymal stromal/stem cells(MSCs)have shown significant therapeutic potential,and have therefore been extensively investigated in preclinical studies of regenerative medicine.However,while MSCs have been shown to be safe as a cellular treatment,they have usually been therapeutically ineffective in human diseases.In fact,in many clinical trials it has been shown that MSCs have moderate or poor efficacy.This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs.Recently,specific priming strategies have been used to improve the therapeutic properties of MSCs.In this review,we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs.We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes.Particularly,while hypoxic priming can be used primarily for the treatment of acute diseases,inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders.The shift in approach from regeneration to inflammation implies,in MSCs,a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways.The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.
基金Supported by NIH,No.R01HL84590NYSTEMUniversity at Buffalo Biomedical Research Service Center
文摘Mesenchymal stem cell(MSC)therapy is entering a challenging phase after completion of many preclinical and clinical trials.Among the major hurdles encountered in MSC therapy are inconsistent stem cell potency,poor cell engraftment and survival,and age/disease-related host tissue impairment.The recognition that MSCs primarily mediate therapeutic benefits through paracrine mechanisms independent of cell differentiation provides a promising framework for enhancing stem cell potency and therapeutic benefits.Several MSC priming approaches are highlighted,which will likely allow us to harness the full potential of adult stem cells for their future routine clinical use.
文摘The critical role played by stroma-epithelium crosstalk in carcinogenesis and progression of prostate cancer has been increasingly recognized. These interactions are mediated by a variety of paracrine factors secreted by cancer cells and/or stromal cells. In human prostate cancer, reactive stroma is characterized by an increase in myofibroblasts and a corresponding amplification of extracellular matrix production and angiogenesis. Permanent genetic mutations have been reported in stromal cells as well as in tumour cells. Transforming growth factor-J3, vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor signalling pathways are involved in the process of angiogenesis, whereas hepatocyte growth factor, insulin-like growth factor-l, epidermal growth factor, CXC12 and Interleukin-6 play active roles in the progression, androgen-independent conversion and distal metastasis of prostate cancer. Some soluble factors have reciprocal interactions with androgens and the androgen receptor (AR), and can even activate AR in the absence of the androgen ligand. In this article, we review the complex interactions between cancer cells and the surrounding microenvironment, and discuss the potential therapeutic targets in the stromal compartment of prostate cancer.