●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven fa...●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.展开更多
Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were admi...Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives.The clinical feature analysis included the evaluation of visual acuity,intraocular pressure,slit-lamp anterior segment examination,fundus photography,and spectral domain optical coherence tomography.To identify the mutation responsible for aniridia,targeted next-generation sequencing was used as a beneficial technique.Results A total of 4 mutations were identified,consisting of two novel frameshift mutations(c.314delA,p.K105Sfs*33 and c.838_845dup AACACACC,p.S283Tfs*85),along with two recurring nonsense mutations(c.307C>T,p.R103X and c.619A>T,p.K207*).Complete iris absence,macular foveal hypoplasia,and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families,while corneal lesions,cataracts,and glaucoma exhibited heterogeneity both among the families and within the same family.Conclusion In our study,two novel PAX6 mutations associated with aniridia were identified in Chinese families,which expanded the phenotypic and genotypic spectrum of PAX6 mutations.We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.展开更多
文摘●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.
文摘Objective To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency.Methods A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives.The clinical feature analysis included the evaluation of visual acuity,intraocular pressure,slit-lamp anterior segment examination,fundus photography,and spectral domain optical coherence tomography.To identify the mutation responsible for aniridia,targeted next-generation sequencing was used as a beneficial technique.Results A total of 4 mutations were identified,consisting of two novel frameshift mutations(c.314delA,p.K105Sfs*33 and c.838_845dup AACACACC,p.S283Tfs*85),along with two recurring nonsense mutations(c.307C>T,p.R103X and c.619A>T,p.K207*).Complete iris absence,macular foveal hypoplasia,and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families,while corneal lesions,cataracts,and glaucoma exhibited heterogeneity both among the families and within the same family.Conclusion In our study,two novel PAX6 mutations associated with aniridia were identified in Chinese families,which expanded the phenotypic and genotypic spectrum of PAX6 mutations.We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.