Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-adde...Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, an...This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, and drying. In the second part, the parameters which can influence the quality of pellets including formulation(moisture content, granulating liquid,excipients, and drugs), equipment(mixer, extruder, friction plate, and extrusion screen) and process(extrusion speed, extrusion temperature, spheronizer load, spheronization time,spheronization speed, and drying method) are discussed. In the final part, methods available for characterization(particle size distribution, surface area, shape and sphericity, porosity,density, hardness and friability, flow properties, disintegration, and dissolution) of the pellets are explained.展开更多
Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting ...Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility.展开更多
This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire f...This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire fuels. Wildfire suppression costs in British Columbia hav</span><span style="font-family:Verdana;">e exceeded the set budget in 9 of the last 10 years and the province has only reduced the fuel load on a fraction of the high-risk hectares. Using a novel high-moisture mobile pellet mill allows the production of 89,000 tonnes of wood pellets each year for a price of $293 <img src="Edit_1733c4c4-fb86-4547-b5bd-749e94873516.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. Each tonne produced also provides $546 <img src="Edit_af634406-31e8-442c-baf8-b48928050931.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> in additional benefits from employment, taxation, and </span><span style="font-family:Verdana;">reductions in the cost to perform fuel treatments. The presented research</span><span style="font-family:Verdana;"> found that 11 employees are needed to operate a mobile pellet mill, with total employment of 242 for 22 systems across BC. The assessed system can also avoid $5.5 million in employment insurance payments. The 22 systems also provide $323,000 in taxable profits and $524,000 from income taxes from employees. Fuel treatment with the researched systems costs $1112 <img src="Edit_135d6ab7-4f3a-41dd-ba91-2d0d66933731.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. A </span><span style="font-family:Verdana;">cost</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">benefit analysis shows that the system provides $2.97 in benefits for</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"> every dollar invested.</span></span>展开更多
Pulverizing is an essential unit operation in co-firing biomass with coal.Pulverizers are only compatible with pellet forms of fibrous biomass materials and crush them down to their original forming particle sizes.Tha...Pulverizing is an essential unit operation in co-firing biomass with coal.Pulverizers are only compatible with pellet forms of fibrous biomass materials and crush them down to their original forming particle sizes.That is why the data on the size distribution of the particles forming a biomass pellet is crucial to achieving optimum combustion conditions.The current study determines the internal particle size distribution of pellets after wet disintegration,following Iso 17830 standard,and aims to suggest improvements to the mentioned standard based on new measured evidence.Experiments were carried out on white wood pellets(no bark)and brown wood pellets containing bark at four water temperatures:20,40,60,and 95℃,with or without stirring.The particle size distribution of the pre-pelletizer wood particles was also measured and compared with particles in the formed pellets.Ambient water temperature of 20℃ was found to be adequate for the complete disintegration of pellets,and no mechanical stirring was required.About 30% of particles in the disintegrated pellets were 0.5-1.0 mm.Pelletization changes the particle size distribution to smaller particles.The disintegrated bark pellets contained more fines than white pellets.展开更多
High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future....High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
A procedure for evaluating the susceptibility of raw materials for the process of sintering of iron ore mixes is presented. The procedure relies on the evaluation of the amount and quality of the finest grain fraction...A procedure for evaluating the susceptibility of raw materials for the process of sintering of iron ore mixes is presented. The procedure relies on the evaluation of the amount and quality of the finest grain fraction. The method is based on determination of particular grain fractions. For the grain less than 0.15 mm, the determination of the a- mount is performed using an IPS (Infrared Particles Sizer) grain size analyzer and for the grain larger than 0.15 ram, the fraction is determined using the (wet and dry) screening methods. This allows for quantity assessment of the quality of material in terms of its susceptibility to self-pelletizing by calculating Total Ability for SelPPelletizing (TASP) index fT. The presented method, in combination with the grain size and chemical analyses, can serve for evaluation of suitability of raw material and mixes for the sintering process. Furthermore, the TASP index for 10 types of iron ores and concentrates was determined. The usability of the TASP index was verified by determination of its impact on yield of sintering process both in laboratory and in industry scale.展开更多
A multi-hole pelletizing device(MPD)was proposed to simulate the granular extrusion process of animal feed due to its cheap,fast,and controllable features.The compression mechanism was analyzed and discussed according...A multi-hole pelletizing device(MPD)was proposed to simulate the granular extrusion process of animal feed due to its cheap,fast,and controllable features.The compression mechanism was analyzed and discussed according to the compression force-time curve.This study applied response surface methodology(RSM)with a central composite design(CCD)to develop predictive models for the compression force Fout and the pellet properties which includes pellet densityρp,pellet moisture content Mcp,and pellet tensile strength Dp based on the MPD.The effects of feedstock moisture content Mcf(10%-18%w.b.),feedstock particle size Sf(8 meshes-24 meshes),die temperature Td(70°C-110°C)and compression speed Vc(5 mm/min to 25 mm/min)were investigated.Response surface models developed for the compression force and pellet properties have adequately described the pelleting process(R^(2)>0.95).The results showed the significant effects of all factors and most of the squared and interaction terms on the compression force and pellet physical properties.It can be concluded from the present study that moisture content and die temperature,followed by compression speed and feedstock particle size are the interacting process factors influencing compression force and pellet properties.展开更多
Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling ...Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.展开更多
Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there ...Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.展开更多
Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pelle...Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.展开更多
Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling...Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.展开更多
Objective:To assess the effect of leaf extract of Persicaria lanigera on cotton pellet-induced granuloma tissue formation and acetic acid-induced ulcerative colitis.Methods:Rats were randomly divided into six groups:n...Objective:To assess the effect of leaf extract of Persicaria lanigera on cotton pellet-induced granuloma tissue formation and acetic acid-induced ulcerative colitis.Methods:Rats were randomly divided into six groups:normal control,negative control,positive control(dexamethasone or sulfasalazine)as well as Persicaria lanigera(100-600 mg/kg)-treated groups.The effects of the extracts on body weight,antioxidant,and hematological parameters,as well as mast cell proliferation,were assessed.In addition,a histological evaluation was conducted.Results:Persicaria lanigera extract significantly decreased the mean exudate amount and suppressed granuloma tissue formation in a concentration-dependent manner in rats(P<0.05).Additionally,the extract significantly increased body weight,improved hematological profile,reduced the disease activity index score and malondialdehyde level,as well as enhanced catalase and superoxide dismutase activities(P<0.05).Histological evaluation showed Persicaria lanigera extract alleviated acetic acid-induced colonic damages,as evidenced by decreased cell necrosis,edema,and inflammatory cell infiltration.Conclusions:Persicaria lanigera extract possesses antiproliferative,antioxidative,and anti-colitis activities.However,its underlying mechanisms of action need further investigation.展开更多
The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))...The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.展开更多
Densification is required for efficiently handling and transporting biomass as feedstock for biofuel production.Binders can enhance straw pellet strength and improve the pellet performance.The present investigation ai...Densification is required for efficiently handling and transporting biomass as feedstock for biofuel production.Binders can enhance straw pellet strength and improve the pellet performance.The present investigation aimed to optimize binders and compression load for wheat straw pelletization using a single pelleting unit.Response surface methodology was employed by using a four-factor,five-level central composite design with wood residue(%,w/w),bentonite(%,w/w),crude glycerol(%,w/w),and compression load(N)as process parameters.The pellet tensile strength,specific energy consumption of pelleting,and pellet density were the response variables.The higher heating value,ash content of the pellet product and the cost of the feedstock were also considered in optimizing binder addition.The developed model fitted the data and was adequate for binder analysis and optimization.Wheat straw pellet,with the addition of 30% wood residue,0.80% bentonite,and 3.42% crude glycerol,in addition to 4000 N of compressive load,was identified as optimal with good performance of pellet tensile strength(1.14 MPa),specific energy consumption(32.6 kJ/kg),and pellet density(1094 kg/m^(3))as well as low ash content(6.13%)and high heating value(18.64 MJ/kg).Confirmation tests indicated high accuracy of the model.展开更多
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w...Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking.展开更多
With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of...With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of aluminum on pellet quality must be identified.In this study,the influence of aluminum occurrence and content on the induration of hematite(H)and magnetite(M)pellets was investigated through the addition of corresponding Al-containing additives,including alumina,alumogoethite,gibbsite,and kaolinite.Systematic mineralogical analysis,combined with the thermodynamic properties of different aluminum occurrences and the quantitative characterization of consolidation behaviors,were conducted to determine the related mechanism.The results showed that the alumina from various aluminum occurrences adversely affected the induration characteristics of pellets,especially at an aluminum content of more than 2.0wt%.The thermal decomposition of gibbsite and kaolinite tends to generate internal stress and fine cracks,which hinder the respective microcrystalline bonding and recrystallization between Fe2O3particles.The adverse effect on the induration characteristics of fired pellets with different aluminum occurrences can be relieved to varying degrees through the formation of liquid phase bonds between the hematite particles.Kaolinite is more beneficial to the induration process than the other three aluminum occurrences because of the formation of more liquid phase,which improves pellet consolidation.The research results can further provide insights into the effect of aluminum occurrence and content in iron ore concentrates on downstream processing and serve as a guide for the utilization of high-alumina iron ore concentrates in pelletization.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of Southwest Jiaotong University,supported by Sichuan Science and Technology Program(2021YFS0284).
文摘Hydrothermal carbonization is highly applicable to high moisture biomass upgrading due to the fact that moist-ure involved can be directly used as reaction media under the subcritical-water region.With this,value-added utilization of hydrochar as solid fuel with high carbon and energy density is one of the important pathways for biomass conversion.In this review,the dewatering properties of hydrochar after the hydrothermal carbonization of biowaste,coalification degree with elemental composition and evolution,pelletization of hydrochar to enhance the mechanical properties and density,coupled with the combustion properties of hydrochar biofuel were discussed with various biomass and carbonization parameters.Potential applications for the co-combustion with coal,cleaner properties and energy balance for biowaste hydrothermal carbonization were presented as well as the challenges.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
文摘This review article deals with various aspects of the extrusion–spheronization technique.The first part includes different steps in the production process of pellets such as granulation, extrusion, spheronization, and drying. In the second part, the parameters which can influence the quality of pellets including formulation(moisture content, granulating liquid,excipients, and drugs), equipment(mixer, extruder, friction plate, and extrusion screen) and process(extrusion speed, extrusion temperature, spheronizer load, spheronization time,spheronization speed, and drying method) are discussed. In the final part, methods available for characterization(particle size distribution, surface area, shape and sphericity, porosity,density, hardness and friability, flow properties, disintegration, and dissolution) of the pellets are explained.
文摘Thermal treatment of biomass has been attracting attention for a decade or so, especially torrefaction. However, for the past few years, wet pyrolysis, also known as hydrothermal carbonization (HTC), has been getting some attention. Hydrothermal carbonization is a thermal treatment of biomass in the presence of water in a temperature range of 180°C - 260°C. This method of treating biomass has some benefits which others do not, such as it can handle extremely wet biomass. However, treating biomass may not be enough for practical use. It may need to be transported and stored. Thus, this study explored the idea of pelletizing the HTC biomass. The mechanical strength of the HTC pellets was found to be 93%, whereas, higher heating value (HHV) (dry basis) was found to be 4% higher than the corresponding white pellets. The initial results with some limited parameters indicated that it would be possible to pelletize without binder. However, extensive research on energy balance and economic assessment would be necessary to achieve economic feasibility.
文摘This paper analyzes the implications on employment, taxation, and wildfire fuel reduction costs when using mobile pellet mills to remove biomass and <span style="font-family:Verdana;">reduce wildfire fuels. Wildfire suppression costs in British Columbia hav</span><span style="font-family:Verdana;">e exceeded the set budget in 9 of the last 10 years and the province has only reduced the fuel load on a fraction of the high-risk hectares. Using a novel high-moisture mobile pellet mill allows the production of 89,000 tonnes of wood pellets each year for a price of $293 <img src="Edit_1733c4c4-fb86-4547-b5bd-749e94873516.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. Each tonne produced also provides $546 <img src="Edit_af634406-31e8-442c-baf8-b48928050931.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> in additional benefits from employment, taxation, and </span><span style="font-family:Verdana;">reductions in the cost to perform fuel treatments. The presented research</span><span style="font-family:Verdana;"> found that 11 employees are needed to operate a mobile pellet mill, with total employment of 242 for 22 systems across BC. The assessed system can also avoid $5.5 million in employment insurance payments. The 22 systems also provide $323,000 in taxable profits and $524,000 from income taxes from employees. Fuel treatment with the researched systems costs $1112 <img src="Edit_135d6ab7-4f3a-41dd-ba91-2d0d66933731.png" alt="" /></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. A </span><span style="font-family:Verdana;">cost</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">benefit analysis shows that the system provides $2.97 in benefits for</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"> every dollar invested.</span></span>
基金financially supported by the National Natural Science Foundation of China(No.51474161)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘Pulverizing is an essential unit operation in co-firing biomass with coal.Pulverizers are only compatible with pellet forms of fibrous biomass materials and crush them down to their original forming particle sizes.That is why the data on the size distribution of the particles forming a biomass pellet is crucial to achieving optimum combustion conditions.The current study determines the internal particle size distribution of pellets after wet disintegration,following Iso 17830 standard,and aims to suggest improvements to the mentioned standard based on new measured evidence.Experiments were carried out on white wood pellets(no bark)and brown wood pellets containing bark at four water temperatures:20,40,60,and 95℃,with or without stirring.The particle size distribution of the pre-pelletizer wood particles was also measured and compared with particles in the formed pellets.Ambient water temperature of 20℃ was found to be adequate for the complete disintegration of pellets,and no mechanical stirring was required.About 30% of particles in the disintegrated pellets were 0.5-1.0 mm.Pelletization changes the particle size distribution to smaller particles.The disintegrated bark pellets contained more fines than white pellets.
基金supported by the National Natural Science Foundation of China (Nos.52174277 and 52204309)the China Postdoctoral Science Foundation (No.2022M720683).
文摘High-chromium vanadium-titanium magnetite(HVTM)is a crucial polymetallic-associated resource to be developed.The allpellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future.By referencing the production data of vanadium-titanium magnetite blast furnaces,this study explored the softening-melting behavior of high-chromium vanadium-titanium magnetite and obtained the optimal integrated burden based on flux pellets.The results show that the burden with a composition of 70wt%flux pellets and 30wt%acid pellets exhibits the best softening-melting properties.In comparison to that of the single burden,the softening-melting characteristic temperature of this burden composition was higher.The melting interval first increased from 307 to 362℃and then decreased to 282℃.The maximum pressure drop(ΔPmax)decreased from 26.76 to 19.01 kPa.The permeability index(S)dropped from 4643.5 to 2446.8 kPa·℃.The softening-melting properties of the integrated burden were apparently improved.The acid pellets played a role in withstanding load during the softening process.The flux pellets in the integrated burden exhibited a higher slag melting point,which increased the melting temperature during the melting process.The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden.The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening-melting properties of the integrated burden.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
文摘A procedure for evaluating the susceptibility of raw materials for the process of sintering of iron ore mixes is presented. The procedure relies on the evaluation of the amount and quality of the finest grain fraction. The method is based on determination of particular grain fractions. For the grain less than 0.15 mm, the determination of the a- mount is performed using an IPS (Infrared Particles Sizer) grain size analyzer and for the grain larger than 0.15 ram, the fraction is determined using the (wet and dry) screening methods. This allows for quantity assessment of the quality of material in terms of its susceptibility to self-pelletizing by calculating Total Ability for SelPPelletizing (TASP) index fT. The presented method, in combination with the grain size and chemical analyses, can serve for evaluation of suitability of raw material and mixes for the sintering process. Furthermore, the TASP index for 10 types of iron ores and concentrates was determined. The usability of the TASP index was verified by determination of its impact on yield of sintering process both in laboratory and in industry scale.
基金We acknowledge that this work was supported by the Jiangsu Provincial Funds for Transformation of Scientific and Technological Achievements(BA2017081).
文摘A multi-hole pelletizing device(MPD)was proposed to simulate the granular extrusion process of animal feed due to its cheap,fast,and controllable features.The compression mechanism was analyzed and discussed according to the compression force-time curve.This study applied response surface methodology(RSM)with a central composite design(CCD)to develop predictive models for the compression force Fout and the pellet properties which includes pellet densityρp,pellet moisture content Mcp,and pellet tensile strength Dp based on the MPD.The effects of feedstock moisture content Mcf(10%-18%w.b.),feedstock particle size Sf(8 meshes-24 meshes),die temperature Td(70°C-110°C)and compression speed Vc(5 mm/min to 25 mm/min)were investigated.Response surface models developed for the compression force and pellet properties have adequately described the pelleting process(R^(2)>0.95).The results showed the significant effects of all factors and most of the squared and interaction terms on the compression force and pellet physical properties.It can be concluded from the present study that moisture content and die temperature,followed by compression speed and feedstock particle size are the interacting process factors influencing compression force and pellet properties.
基金supported by the National Natural Science Foundation of China (Grant Nos.12205196 and 12275040)the National Key Research and Development Program of China (Grant No.2022YFE03090003)。
文摘Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.
基金The financial support from the National Pork Board,Des Moines,IA,USA,is greatly appreciated。
文摘Background Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy.Pelleting may also reduce particle size of grain,but it is not known if there are interactions between particle size reduction and pelleting.The objective of this experiment was to test the hypothesis that particle size reduction and pelleting,separately or in combination,increase N balance,apparent total tract digestibility(ATTD)of fiber and fat,and net energy(NE)in corn-soybean meal diets fed to group-housed pigs.Methods Six corn-soybean meal-based diets were used in a 3×2 factorial design with 3 particle sizes of corn(i.e.,700,500,or 300μm)and 2 diet forms(i.e.,meal or pelleted).Pigs were allowed ad libitum access to feed and water.Twenty-four castrated male pigs(initial weight:29.52 kg;standard diviation:1.40)were allotted to the 6 diets using a 6×6 Latin square design with 6 calorimeter chambers(i.e.,4 pigs/chamber)and 6 periods.Oxygen consumption and CO_(2)and CH_(4)productions were measured during fed and fasting states and fecal and urine samples were collected.Results Regardless of particle size of corn,the ATTD of gross energy(GE),N,and acid-hydrolyzed ether extract(AEE),and the concentration of NE were greater(P<0.05)in pelleted diets than in meal diets.Regardless of diet form,the ATTD of GE,N,and AEE,and the concentration of NE were increased(linear;P<0.05)by reducing the particle size of corn,but the increase was greater in meal diets than in pelleted diets(interaction;P<0.05).Conclusions Both pelleting and reduction of corn particle size increased nutrient digestibility and NE,but increases were greater in meal diets than in pelleted diets.
基金the National Natural Science Foundation of China(No.51904063)the Science and Technology Plan Project of Liaoning Province,China(No.2022JH24/10200027)+1 种基金the Key Research and Development Project of Hebei Province,China(No.21314001D)the seventh batch of the Ten Thousand Talents Plan(No.ZX20220553).
文摘Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.
基金NPRP grant number NPRP12S-0325-190443 from the Qatar National Research Fund (a member of the Qatar Foundation)
文摘Plastic waste is an underutilized resource that has the potential to be transformed into value-added materials.However,its chemical diversity leads to cost-intensive sorting techniques,limiting recycling and upcycling opportunities.Herein,we report an open-loop recycling method to produce graded feedstock from mixed polyolefins waste,which makes up 60%of total plastic waste.The method uses heat flow scanning to quantify the composition of plastic waste and resolves its compatibility through controlled dissolution.The resulting feedstock is then used to synthesize blended pellets,porous sorbents,and superhydrophobic coatings via thermally induced phase separation and spin-casting.The hybrid approach broadens the opportunities for reusing plastic waste,which is a step towards creating a more circular economy and better waste management practices.
文摘Objective:To assess the effect of leaf extract of Persicaria lanigera on cotton pellet-induced granuloma tissue formation and acetic acid-induced ulcerative colitis.Methods:Rats were randomly divided into six groups:normal control,negative control,positive control(dexamethasone or sulfasalazine)as well as Persicaria lanigera(100-600 mg/kg)-treated groups.The effects of the extracts on body weight,antioxidant,and hematological parameters,as well as mast cell proliferation,were assessed.In addition,a histological evaluation was conducted.Results:Persicaria lanigera extract significantly decreased the mean exudate amount and suppressed granuloma tissue formation in a concentration-dependent manner in rats(P<0.05).Additionally,the extract significantly increased body weight,improved hematological profile,reduced the disease activity index score and malondialdehyde level,as well as enhanced catalase and superoxide dismutase activities(P<0.05).Histological evaluation showed Persicaria lanigera extract alleviated acetic acid-induced colonic damages,as evidenced by decreased cell necrosis,edema,and inflammatory cell infiltration.Conclusions:Persicaria lanigera extract possesses antiproliferative,antioxidative,and anti-colitis activities.However,its underlying mechanisms of action need further investigation.
基金Project(52274343)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3903900,2023YFC3903904)supported by the National Key R&D Program of China。
文摘The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.
基金the funding provided by the Natural Sciences and Engineering Research Council of Canada(NSERC)BIOFUELNET,“Special Fund for Agro-scientific Research in the Public Interest(201203024)”of ChinaChina Agriculture Research System(CARS-35).
文摘Densification is required for efficiently handling and transporting biomass as feedstock for biofuel production.Binders can enhance straw pellet strength and improve the pellet performance.The present investigation aimed to optimize binders and compression load for wheat straw pelletization using a single pelleting unit.Response surface methodology was employed by using a four-factor,five-level central composite design with wood residue(%,w/w),bentonite(%,w/w),crude glycerol(%,w/w),and compression load(N)as process parameters.The pellet tensile strength,specific energy consumption of pelleting,and pellet density were the response variables.The higher heating value,ash content of the pellet product and the cost of the feedstock were also considered in optimizing binder addition.The developed model fitted the data and was adequate for binder analysis and optimization.Wheat straw pellet,with the addition of 30% wood residue,0.80% bentonite,and 3.42% crude glycerol,in addition to 4000 N of compressive load,was identified as optimal with good performance of pellet tensile strength(1.14 MPa),specific energy consumption(32.6 kJ/kg),and pellet density(1094 kg/m^(3))as well as low ash content(6.13%)and high heating value(18.64 MJ/kg).Confirmation tests indicated high accuracy of the model.
基金financially supported by the National Natural Science Foundation of China (22078090 and 92034301)the Shanghai Rising-Star Program (21QA1402000)+1 种基金the Natural Science Foundation of Shanghai (21ZR1418100)the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-21C02)。
文摘Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking.
基金financially supported by the National Natural Science Foundation of China(Nos.52004339 and 52174329)the Fundamental Research Funds for the Central Universities,China(No.N2325031)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202216)。
文摘With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of aluminum on pellet quality must be identified.In this study,the influence of aluminum occurrence and content on the induration of hematite(H)and magnetite(M)pellets was investigated through the addition of corresponding Al-containing additives,including alumina,alumogoethite,gibbsite,and kaolinite.Systematic mineralogical analysis,combined with the thermodynamic properties of different aluminum occurrences and the quantitative characterization of consolidation behaviors,were conducted to determine the related mechanism.The results showed that the alumina from various aluminum occurrences adversely affected the induration characteristics of pellets,especially at an aluminum content of more than 2.0wt%.The thermal decomposition of gibbsite and kaolinite tends to generate internal stress and fine cracks,which hinder the respective microcrystalline bonding and recrystallization between Fe2O3particles.The adverse effect on the induration characteristics of fired pellets with different aluminum occurrences can be relieved to varying degrees through the formation of liquid phase bonds between the hematite particles.Kaolinite is more beneficial to the induration process than the other three aluminum occurrences because of the formation of more liquid phase,which improves pellet consolidation.The research results can further provide insights into the effect of aluminum occurrence and content in iron ore concentrates on downstream processing and serve as a guide for the utilization of high-alumina iron ore concentrates in pelletization.