Peroxisomes are organelles enclosed by a single membrane and are present in various species.The abruption of peroxisomes is correlated with peroxisome biogenesis disorders and single peroxisomal enzyme deficiencies th...Peroxisomes are organelles enclosed by a single membrane and are present in various species.The abruption of peroxisomes is correlated with peroxisome biogenesis disorders and single peroxisomal enzyme deficiencies that induce diverse diseases in different organs.However,little is known about the protein compositions and corresponding roles of heterogeneous peroxisomes in various organs.Through transcriptomic and proteomic analyses,we observed heterogenous peroxisomal components among different organs,as well as between testicular somatic cells and different developmental stages of germ cells.As Pex3 is expressed in both germ cells and Sertoli cells,we generated Pex3 germ cell-and Sertoli cell-specific knockout mice.While Pex3 deletion in Sertoli cells did not affect spermatogenesis,the deletion in germ cells resulted in male sterility,manifested as the destruction of intercellular bridges between spermatids and the formation of multinucleated giant cells.Proteomic analysis of the Pex3-deleted spermatids revealed defective expressions of peroxisomal proteins and spermiogenesis-related proteins.These findings provide new insights that PEX3-dependent peroxisomes are essential for germ cells undergoing spermiogenesis,but not for Sertoli cells.展开更多
Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions.Included among these are the metabolism of hydrogen peroxide and other reactive species,molecules whose le...Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions.Included among these are the metabolism of hydrogen peroxide and other reactive species,molecules whose levels help define the oxidative state of cells.Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease.The goal of this article is to review evidence for connections between peroxisome function,oxidative stress,and inflammation in the context of human health and degenerative disease.Dysregulated points in this nexus are identified and potential remedial approaches are presented.展开更多
Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism,especially in terms of fatty acid metabolism,reactive oxygen species(ROS) production,and ROS scavenging,and i...Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism,especially in terms of fatty acid metabolism,reactive oxygen species(ROS) production,and ROS scavenging,and it is now clear that they metabolically interact with each other. These two organelles share some properties,such as great plasticity and high potency to adapt their form and number according to cell requirements. Their functions are connected,and any alteration in the function of mitochondria may induce changes inperoxisomal physiology. The objective of this paper was to highlight the interconnection and the crosstalk existing between mitochondria and peroxisomes. Special emphasis was placed on the best known connections between these organelles:origin,structure,and metabolic interconnections.展开更多
Peroxisomes and mitochondria are ubiquitously found organelles. They both are dynamic structures able to divide, to fuse and to undergo autophagic processes. Their activities are dependent on proteins that are, for mo...Peroxisomes and mitochondria are ubiquitously found organelles. They both are dynamic structures able to divide, to fuse and to undergo autophagic processes. Their activities are dependent on proteins that are, for most (mitochondria) or all (peroxisome) of them, synthesized in the cytosol from the nuclear genome. Nevertheless, the membrane structures and the DNA content differ between these two organelles. Mitochondria possess a small circular genome while peroxisomes don’t. The control of their dynamic is dependent on specific factors even if some of those are able to affect both. These two organelles are metabolically connected: they are both involved in lipid metabolism. They are both able to beta oxidize fatty acids and are implicated in ROS production. However, their precise function in these metabolic pathways and their physiological functions are different. While mitochondrial metabolism is closely related to energy production, peroxisome does not seem to be associated with energy production but with the production of bioactive molecules and in detoxification processes.展开更多
Pseudo-neonatal adrenoleukodystrophy (P-NALD) is a neurodegenerative disorder caused by acyl-CoA oxidase 1 (ACOX1) deficiency with subsequent impairment of peroxisomal fatty acid β-oxidation, accumulation of very lon...Pseudo-neonatal adrenoleukodystrophy (P-NALD) is a neurodegenerative disorder caused by acyl-CoA oxidase 1 (ACOX1) deficiency with subsequent impairment of peroxisomal fatty acid β-oxidation, accumulation of very long chain fatty acids (VLCFAs) and strong reduction in peroxisome abundance. Increase in peroxisome number has been previously suggested to improve peroxisomal disorders, and in this perspective, the present work was aimed at exploring whether modulation of peroxisomes abundance could be achieved in P-NALD fibroblasts. Here we showed that treatment with the natural Argan oil induced peroxisome proliferation in P-NALD fibroblasts. This induction was independent on activations of both nuclear receptor PPARα and its coactivator PGC-1α. Lipopolysaccharides (LPS) treatment, which caused inflammation, induced also a peroxisome proliferation that, in contrast, was dependent on activations of PPARα and PGC-1α. By its ability to induce peroxisome proliferation, Argan oil is suggested to be of potential therapeutic use in patients with P-NALD.展开更多
Protein ubiquitination regulates diverse cellular processes in eukaryotic organisms,from growth and development to stress response.Proteins subjected to ubiquitination can be found in virtually all subcellular locatio...Protein ubiquitination regulates diverse cellular processes in eukaryotic organisms,from growth and development to stress response.Proteins subjected to ubiquitination can be found in virtually all subcellular locations and organelles,including peroxisomes,singlemembrane and highly dynamic organelles ubiquitous in eukaryotes.Peroxisomes contain metabolic functions essential to plants and animals such as lipid catabolism,detoxification of reactive oxygen species(ROS),biosynthesis of vital hormones and cofactors,and photorespiration.Plant peroxisomes possess a complex proteome with functions varying among different tissue types and developmental stages,and during plant response to distinct environmental cues.However,how these diverse functions are regulated at the post-translational level is poorly understood,especially in plants.In this review,we summarized current knowledge of the involvement of protein ubiquitination in peroxisome protein import,remodeling,pexophagy,and metabolism,focusing on plants,and referencing discoveries from other eukaryotic systems when relevant.Based on previous ubiquitinomics studies,we compiled a list of 56 ubiquitinated Arabidopsis peroxisomal proteins whose functions are associated with all the major plant peroxisomal metabolic pathways.This discovery suggests a broad impact of protein ubiquitination on plant peroxisome functions,therefore substantiating the need to investigate this significant regulatory mechanism in peroxisomes at more depths.展开更多
BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome prolifer...BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.展开更多
In mammals,the timing of physiological,biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms.To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus ...In mammals,the timing of physiological,biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms.To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm,environmental zeitgebers are used by the circadian system.This is done primarily by signals from the retina via the retinohypothalamic tract,but other cues like exercise,feeding,temperature,anxiety,and social events have also been shown to act as non-photic zeitgebers.The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise.Irisin is a product of cleavage and modification from its precursor membrane fibronectin typeⅢdomain-containing protein 5(FNDC5)in response to exercise.Apart from well-known peripheral effects,such as inducing the"browning"of white adipocytes,irisin can penetrate the blood-brain barrier and display the effects on the brain.Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions.In several brain areas,irisin induces the production of brain-derived neurotrophic factor(BDNF).In the master clock,a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested.However,the brain receptor for irisin remains unknown.In the current review,the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.展开更多
Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide, metabolism of fatty acids, photorespiration, and the bio...Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide, metabolism of fatty acids, photorespiration, and the biosyn- thesis of plant hormones. Plant peroxisomes have been traditionally classified into three major subtypes, and in-depth mass spectrometry (MS)-based proteomics has been per- formed to explore the proteome of the two major subtypes present in green leaves and etiolated seedlings. Here, we carried out a comprehensive proteome analysis of perox- isomes from Arabidopsis leaves given a 48-h dark treatment. Our goal was to determine the proteome of the third major subtype of plant peroxisomes from senescent leaves, and further catalog the plant peroxisomal proteome. We identified a total of 111 peroxisomal proteins and verified the peroxisomal localization for six new proteins with potential roles in fatty acid metabolism and stress response by in vivo targeting analysis. Metabolic pathways compartmentalized in the three major subtypes of peroxisomes were also compared, which revealed a higher number of proteins involved in the detoxification of reactive oxygen species in peroxisomes from senescent leaves. Our study takes an important step towards mapping the full function of plant peroxisomes.展开更多
Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR3...Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury.展开更多
Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid...Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid metabolism,photorespiration,and hormone biosynthesis and catabolism,and remodel their proteome in response to developmental and environmental changes(Hu et al.2012;Pan and Hu 2018).The four reviews and three research articles in this special issue on plant peroxisomes provide new insights into the diverse roles and dynamics of these structurally simple but functionally complicated organelles,raising exciting new questions for future investigations.展开更多
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions.These organelles hav...Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions.These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations.Furthermore,peroxisomes have the capacity to proliferateand also undergo biochemical adaptations depending on the surrounding cellular status.An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species(RNS and ROS)which generates two key molecules,nitric oxide(NO)and hydrogen peroxide(H2O2).These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins,peptides or fatty acids.This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.展开更多
Peroxisomes are small multi-functional organelles essential for plant development and growth.Plant peroxisomes play various physiological roles,including phytohormone biosynthesis,lipid catabolism,reactive oxygen spec...Peroxisomes are small multi-functional organelles essential for plant development and growth.Plant peroxisomes play various physiological roles,including phytohormone biosynthesis,lipid catabolism,reactive oxygen species metabolism and many others.Mutant an alysis dem on strated key roles for peroxisomes in plant reproduction,seed development and germination and post-germinative seedling establishment;however,the underlying mechanisms remain to be fully elucidated.This review summarizes fin dings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes.Theβ-oxidation pathway plays a central role,whereas other peroxisomal pathways are also involved.Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.展开更多
The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions,migrate along actin filaments and contact other types of organelles, ...The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions,migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles.In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.展开更多
In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the inte...In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.展开更多
Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fis...Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.展开更多
We discuss the article by Koizumi et al published in the World Journal of Gastroenterology.Our focus is on the therapeutic targets for fibrosis associated with alcohol-related liver disease(ALD)and the mechanism of ac...We discuss the article by Koizumi et al published in the World Journal of Gastroenterology.Our focus is on the therapeutic targets for fibrosis associated with alcohol-related liver disease(ALD)and the mechanism of action of elafibranor(EFN),a dual agonist of peroxisome proliferator-activated receptorα(PPARα)and peroxisome PPARδ(PPARδ).EFN is currently in phase III clinical trials for the treatment of metabolic dysfunction-associated fatty liver disease and primary biliary cholangitis.ALD progresses from alcoholic fatty liver to alcoholic steatohepatitis(ASH),with chronic ASH eventually leading to fibrosis,cirrhosis,and,in some cases,hepatocellular carcinoma.The pathogenesis of ALD is driven by hepatic steatosis,oxidative stress,and acetaldehyde toxicity.Alcohol consumption disrupts lipid metabolism by inactivating PPARα,exacerbating the progression of ALD.EFN primarily activates PPARα,promoting lipolysis andβ-oxidation in ethanol-stimulated HepG2 cells,which significantly reduces hepatic steatosis,apoptosis,and fibrosis in an ALD mouse model.Additionally,alcohol disrupts the gut-liver axis at several interconnected levels,contributing to a proinflammatory environment in the liver.EFN helps alleviate intestinal hyperpermeability by restoring tight junction protein expression and autophagy,inhibiting apoptosis and inflammatory responses,and enhancing intestinal barrier function through PPARδactivation.展开更多
A recently published article in the World Journal of Gastroenterology clarified that elafibranor,a dual peroxisome proliferator activated receptorα/δ(PPARα/δ)agonist,reduced inflammation and fibrosis in alcohol-as...A recently published article in the World Journal of Gastroenterology clarified that elafibranor,a dual peroxisome proliferator activated receptorα/δ(PPARα/δ)agonist,reduced inflammation and fibrosis in alcohol-associated liver disease(ALD).This letter aims to discuss the findings presented in that article.ALD is a global health problem,and no effective drugs has been approved by the Food and Drug Administration to cure it.Thus,finding targeted therapies is of great urgency.Herein,we focus on the pathogenesis of ALD and the role of PPARα/δin its development.Consistent with the conclusion of the article of interest,we think that elafibranor may be a promising therapeutic option for ALD,due to the pivotal involvement of PPARα/δin the pathogenesis of the disease.However,its treatment dose,timing,and side effects need to be further investigated in future studies.展开更多
In this letter,we review the article“Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease”.We focus specifically on the detrimental effects of alcoho...In this letter,we review the article“Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease”.We focus specifically on the detrimental effects of alcohol-associated liver disease(ALD)on human health.Given its insidious onset and increasing incidence,increasing awareness of ALD can contribute to reducing the prevalence of liver diseases.ALD comprises a spectrum of several different disorders,including liver steatosis,steatohepatitis,fibrosis,cirrhosis,and hepatocellular carcinoma.The pathogenesis of ALD is exceedingly complex.Previous studies have shown that peroxisome proliferator-activated receptors(PPARs)regulate lipid metabolism,glucose homeostasis and inflammatory responses within the organism.Additionally,their dysfunction is a major contributor to the progression of ALD.Elafibranor is an oral,dual PPARαandδagonist.The effectiveness of elafibranor in the treatment of ALD remains unclear.In this letter,we emphasize the harm of ALD and the burden it places on society.Furthermore,we summarize the clinical management of all stages of ALD and present new insights into its pathogenesis and potential therapeutic targets.Additionally,we discuss the mechanisms of action of PPARαandδagonists,the significance of their antifibrotic effects on ALD and future research directions.展开更多
We comment on an article by Koizumi et al.Elafibranor(EFN)is a dual pero-xisome proliferator-activated receptorα/δagonist.The experimental results from Koizumi et al demonstrated that EFN significantly increases int...We comment on an article by Koizumi et al.Elafibranor(EFN)is a dual pero-xisome proliferator-activated receptorα/δagonist.The experimental results from Koizumi et al demonstrated that EFN significantly increases intestinal barrier function and ameliorates liver fibrosis.These positive outcomes suggest that EFN could be a promising therapeutic option for alcohol-associated liver disease(ALD).However,this study has limitations that necessitate further research to evaluate the efficacy of EFN.Future studies should consider the use of more appropriate animal models and cell types,optimize the administration routes and dosages of the drug,and conduct an in-depth investigation into the underlying mechanisms of action to determine the therapeutic effects of EFN in humans.With sustained and in-depth research,EFN has the potential to emerge as a novel therapeutic agent for the treatment of ALD.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.31890784 to J.S.)National Key R&D Program(Grant No.2021YFC2700200 to X.G.)+2 种基金National Natural Science Foundation of China(Grant Nos.92068109 and 82122025 to Yan Yuan)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.21KJA310007 to Yan Yuan)Science Foundation of Gusu School(Grant No.GSKY20220101 to J.S.).
文摘Peroxisomes are organelles enclosed by a single membrane and are present in various species.The abruption of peroxisomes is correlated with peroxisome biogenesis disorders and single peroxisomal enzyme deficiencies that induce diverse diseases in different organs.However,little is known about the protein compositions and corresponding roles of heterogeneous peroxisomes in various organs.Through transcriptomic and proteomic analyses,we observed heterogenous peroxisomal components among different organs,as well as between testicular somatic cells and different developmental stages of germ cells.As Pex3 is expressed in both germ cells and Sertoli cells,we generated Pex3 germ cell-and Sertoli cell-specific knockout mice.While Pex3 deletion in Sertoli cells did not affect spermatogenesis,the deletion in germ cells resulted in male sterility,manifested as the destruction of intercellular bridges between spermatids and the formation of multinucleated giant cells.Proteomic analysis of the Pex3-deleted spermatids revealed defective expressions of peroxisomal proteins and spermiogenesis-related proteins.These findings provide new insights that PEX3-dependent peroxisomes are essential for germ cells undergoing spermiogenesis,but not for Sertoli cells.
文摘Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions.Included among these are the metabolism of hydrogen peroxide and other reactive species,molecules whose levels help define the oxidative state of cells.Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease.The goal of this article is to review evidence for connections between peroxisome function,oxidative stress,and inflammation in the context of human health and degenerative disease.Dysregulated points in this nexus are identified and potential remedial approaches are presented.
文摘Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism,especially in terms of fatty acid metabolism,reactive oxygen species(ROS) production,and ROS scavenging,and it is now clear that they metabolically interact with each other. These two organelles share some properties,such as great plasticity and high potency to adapt their form and number according to cell requirements. Their functions are connected,and any alteration in the function of mitochondria may induce changes inperoxisomal physiology. The objective of this paper was to highlight the interconnection and the crosstalk existing between mitochondria and peroxisomes. Special emphasis was placed on the best known connections between these organelles:origin,structure,and metabolic interconnections.
文摘Peroxisomes and mitochondria are ubiquitously found organelles. They both are dynamic structures able to divide, to fuse and to undergo autophagic processes. Their activities are dependent on proteins that are, for most (mitochondria) or all (peroxisome) of them, synthesized in the cytosol from the nuclear genome. Nevertheless, the membrane structures and the DNA content differ between these two organelles. Mitochondria possess a small circular genome while peroxisomes don’t. The control of their dynamic is dependent on specific factors even if some of those are able to affect both. These two organelles are metabolically connected: they are both involved in lipid metabolism. They are both able to beta oxidize fatty acids and are implicated in ROS production. However, their precise function in these metabolic pathways and their physiological functions are different. While mitochondrial metabolism is closely related to energy production, peroxisome does not seem to be associated with energy production but with the production of bioactive molecules and in detoxification processes.
基金Integree of the Comite Mixte Inter-universitaire Franco-Maro- cain (CMIFM, AIMA/10/238, EGIDE)
文摘Pseudo-neonatal adrenoleukodystrophy (P-NALD) is a neurodegenerative disorder caused by acyl-CoA oxidase 1 (ACOX1) deficiency with subsequent impairment of peroxisomal fatty acid β-oxidation, accumulation of very long chain fatty acids (VLCFAs) and strong reduction in peroxisome abundance. Increase in peroxisome number has been previously suggested to improve peroxisomal disorders, and in this perspective, the present work was aimed at exploring whether modulation of peroxisomes abundance could be achieved in P-NALD fibroblasts. Here we showed that treatment with the natural Argan oil induced peroxisome proliferation in P-NALD fibroblasts. This induction was independent on activations of both nuclear receptor PPARα and its coactivator PGC-1α. Lipopolysaccharides (LPS) treatment, which caused inflammation, induced also a peroxisome proliferation that, in contrast, was dependent on activations of PPARα and PGC-1α. By its ability to induce peroxisome proliferation, Argan oil is suggested to be of potential therapeutic use in patients with P-NALD.
基金supported by the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(No.2019R01002)Key Research Project of Zhejiang Laboratory(No.2021PE0AC04)+3 种基金Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202148338)Zhejiang University Student Research Practice Program(No.P2021041)to R.P.by the National Science Foundation(No.MCB 2148206)US Department of Energy(No.DEFG02-91ER20021)to J.H。
文摘Protein ubiquitination regulates diverse cellular processes in eukaryotic organisms,from growth and development to stress response.Proteins subjected to ubiquitination can be found in virtually all subcellular locations and organelles,including peroxisomes,singlemembrane and highly dynamic organelles ubiquitous in eukaryotes.Peroxisomes contain metabolic functions essential to plants and animals such as lipid catabolism,detoxification of reactive oxygen species(ROS),biosynthesis of vital hormones and cofactors,and photorespiration.Plant peroxisomes possess a complex proteome with functions varying among different tissue types and developmental stages,and during plant response to distinct environmental cues.However,how these diverse functions are regulated at the post-translational level is poorly understood,especially in plants.In this review,we summarized current knowledge of the involvement of protein ubiquitination in peroxisome protein import,remodeling,pexophagy,and metabolism,focusing on plants,and referencing discoveries from other eukaryotic systems when relevant.Based on previous ubiquitinomics studies,we compiled a list of 56 ubiquitinated Arabidopsis peroxisomal proteins whose functions are associated with all the major plant peroxisomal metabolic pathways.This discovery suggests a broad impact of protein ubiquitination on plant peroxisome functions,therefore substantiating the need to investigate this significant regulatory mechanism in peroxisomes at more depths.
文摘BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.
基金supported by the Russian Science Foundation(Grant No.23-25-00152).
文摘In mammals,the timing of physiological,biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms.To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm,environmental zeitgebers are used by the circadian system.This is done primarily by signals from the retina via the retinohypothalamic tract,but other cues like exercise,feeding,temperature,anxiety,and social events have also been shown to act as non-photic zeitgebers.The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise.Irisin is a product of cleavage and modification from its precursor membrane fibronectin typeⅢdomain-containing protein 5(FNDC5)in response to exercise.Apart from well-known peripheral effects,such as inducing the"browning"of white adipocytes,irisin can penetrate the blood-brain barrier and display the effects on the brain.Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions.In several brain areas,irisin induces the production of brain-derived neurotrophic factor(BDNF).In the master clock,a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested.However,the brain receptor for irisin remains unknown.In the current review,the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.
基金supported by grants from the National Science Foundation to J.H.(MCB 0618335MCB 1330441)and L.J.O.(MCB 0618279)
文摘Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide, metabolism of fatty acids, photorespiration, and the biosyn- thesis of plant hormones. Plant peroxisomes have been traditionally classified into three major subtypes, and in-depth mass spectrometry (MS)-based proteomics has been per- formed to explore the proteome of the two major subtypes present in green leaves and etiolated seedlings. Here, we carried out a comprehensive proteome analysis of perox- isomes from Arabidopsis leaves given a 48-h dark treatment. Our goal was to determine the proteome of the third major subtype of plant peroxisomes from senescent leaves, and further catalog the plant peroxisomal proteome. We identified a total of 111 peroxisomal proteins and verified the peroxisomal localization for six new proteins with potential roles in fatty acid metabolism and stress response by in vivo targeting analysis. Metabolic pathways compartmentalized in the three major subtypes of peroxisomes were also compared, which revealed a higher number of proteins involved in the detoxification of reactive oxygen species in peroxisomes from senescent leaves. Our study takes an important step towards mapping the full function of plant peroxisomes.
基金supported by the National Notural Science Foundation of China,Nos.82071556 and 82271291 (both to WM)
文摘Activated G-protein-coupled receptor 39(GPR39)has been shown to attenuate inflammation by interacting with sirtuin 1(SIRT1)and peroxisome proliferator-activated receptor-γcoactivator 1α(PGC-1α).However,whether GPR39 attenuates neuropathic pain remains unclear.In this study,we established a Sprague-Dawley rat model of spared nerve injury-induced neuropathic pain and found that GPR39 expression was significantly decreased in neurons and microglia in the spinal dorsal horn compared with sham-operated rats.Intrathecal injection of TC-G 1008,a specific agonist of GPR39,significantly alleviated mechanical allodynia in the rats with spared nerve injury,improved spinal cord mitochondrial biogenesis,and alleviated neuroinflammation.These changes were abolished by GPR39 small interfering RNA(siRNA),Ex-527(SIRT1 inhibitor),and PGC-1αsiRNA.Taken together,these findings show that GPR39 activation ameliorates mechanical allodynia by activating the SIRT1/PGC-1αpathway in rats with spared nerve injury.
文摘Peroxisomes are small,highly dynamic,and multifunctional organelles in eukaryotes.Essential to plant survival,peroxisomes house various crucial metabolic activities,such as degradation of hydrogen peroxide(H2O2),lipid metabolism,photorespiration,and hormone biosynthesis and catabolism,and remodel their proteome in response to developmental and environmental changes(Hu et al.2012;Pan and Hu 2018).The four reviews and three research articles in this special issue on plant peroxisomes provide new insights into the diverse roles and dynamics of these structurally simple but functionally complicated organelles,raising exciting new questions for future investigations.
基金supported by an ERDF-cofinanced grant from the Ministry of Economy and Competitiveness (AGL2015-65104-P)Junta de Andalucía (group BIO-192),Spain
文摘Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions.These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations.Furthermore,peroxisomes have the capacity to proliferateand also undergo biochemical adaptations depending on the surrounding cellular status.An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species(RNS and ROS)which generates two key molecules,nitric oxide(NO)and hydrogen peroxide(H2O2).These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins,peptides or fatty acids.This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
基金grants from Zhejiang Provincial Natural Science Foundation of China (LQ19C130004)Zhejiang University (ZJU) 100 Talents Program+2 种基金Fundamental Research Funds for the Central Universitiesthe National Science Foundation (MCB 1330441)the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (DE-FG02-91ER20021)
文摘Peroxisomes are small multi-functional organelles essential for plant development and growth.Plant peroxisomes play various physiological roles,including phytohormone biosynthesis,lipid catabolism,reactive oxygen species metabolism and many others.Mutant an alysis dem on strated key roles for peroxisomes in plant reproduction,seed development and germination and post-germinative seedling establishment;however,the underlying mechanisms remain to be fully elucidated.This review summarizes fin dings that reveal the importance and complexity of the role of peroxisomes in the pertinent processes.Theβ-oxidation pathway plays a central role,whereas other peroxisomal pathways are also involved.Understanding the biochemical and molecular mechanisms of these peroxisomal functions will be instrumental to the improvement of crop plants.
基金supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT, KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas to M.N.[No.22120007])a fund to M.N. from Wyeth Foundation
文摘The dynamic behavior of organelles is essential for plant survival under various environmental conditions. Plant organelles, with various functions,migrate along actin filaments and contact other types of organelles, leading to physical interactions at a specific site called the membrane contact site. Recent studies have revealed the importance of physical interactions in maintaining efficient metabolite flow between organelles.In this review, we first summarize peroxisome function under different environmental conditions and growth stages to understand organelle interactions. We then discuss current knowledge regarding the interactions between peroxisome and other organelles, i.e., the oil bodies, chloroplast, and mitochondria from the perspective of metabolic and physiological regulation, with reference to various organelle interactions and techniques for estimating organelle interactions occurring in plant cells.
文摘In this editorial,we examine a paper by Koizumi et al,on the role of peroxisome proliferator-activated receptor(PPAR)agonists in alcoholic liver disease(ALD).The study determined whether elafibranor protected the intestinal barrier and reduced liver fibrosis in a mouse model of ALD.The study also underlines the role of PPARs in intestinal barrier function and lipid homeostasis,which are both affected by ALD.Effective therapies are necessary for ALD because it is a critical health issue that affects people worldwide.This editorial analyzes the possibility of PPAR agonists as treatments for ALD.As key factors of inflammation and metabolism,PPARs offer multiple methods for managing the complex etiology of ALD.We assess the abilities of PPARα,PPARγ,and PPARβ/δagonists to prevent steatosis,inflammation,and fibrosis due to liver diseases.Recent research carried out in preclinical and clinical settings has shown that PPAR agonists can reduce the severity of liver disease.This editorial discusses the data analyzed and the obstacles,advantages,and mechanisms of action of PPAR agonists for ALD.Further research is needed to understand the efficacy,safety,and mechanisms of PPAR agonists for treating ALD.
文摘Peanut allergy is majorly related to severe food induced allergic reactions.Several food including cow's milk,hen's eggs,soy,wheat,peanuts,tree nuts(walnuts,hazelnuts,almonds,cashews,pecans and pistachios),fish and shellfish are responsible for more than 90%of food allergies.Here,we provide promising insights using a large-scale data-driven analysis,comparing the mechanistic feature and biological relevance of different ingredients presents in peanuts,tree nuts(walnuts,almonds,cashews,pecans and pistachios)and soybean.Additionally,we have analysed the chemical compositions of peanuts in different processed form raw,boiled and dry-roasted.Using the data-driven approach we are able to generate new hypotheses to explain why nuclear receptors like the peroxisome proliferator-activated receptors(PPARs)and its isoform and their interaction with dietary lipids may have significant effect on allergic response.The results obtained from this study will direct future experimeantal and clinical studies to understand the role of dietary lipids and PPARisoforms to exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to the cells of the adaptive immunity.
基金Supported by the National Natural Science Foundation of China,No.82474164,No.82305046,and No.82000572Natural Science Foundation of Jiangsu Province,No.BK20220467+1 种基金Major Project of the Natural Science Research of Jiangsu Higher Education Institutions,No.22KJB310013Science and Technology Project of Jiangsu Province,No.BK20200840.
文摘We discuss the article by Koizumi et al published in the World Journal of Gastroenterology.Our focus is on the therapeutic targets for fibrosis associated with alcohol-related liver disease(ALD)and the mechanism of action of elafibranor(EFN),a dual agonist of peroxisome proliferator-activated receptorα(PPARα)and peroxisome PPARδ(PPARδ).EFN is currently in phase III clinical trials for the treatment of metabolic dysfunction-associated fatty liver disease and primary biliary cholangitis.ALD progresses from alcoholic fatty liver to alcoholic steatohepatitis(ASH),with chronic ASH eventually leading to fibrosis,cirrhosis,and,in some cases,hepatocellular carcinoma.The pathogenesis of ALD is driven by hepatic steatosis,oxidative stress,and acetaldehyde toxicity.Alcohol consumption disrupts lipid metabolism by inactivating PPARα,exacerbating the progression of ALD.EFN primarily activates PPARα,promoting lipolysis andβ-oxidation in ethanol-stimulated HepG2 cells,which significantly reduces hepatic steatosis,apoptosis,and fibrosis in an ALD mouse model.Additionally,alcohol disrupts the gut-liver axis at several interconnected levels,contributing to a proinflammatory environment in the liver.EFN helps alleviate intestinal hyperpermeability by restoring tight junction protein expression and autophagy,inhibiting apoptosis and inflammatory responses,and enhancing intestinal barrier function through PPARδactivation.
文摘A recently published article in the World Journal of Gastroenterology clarified that elafibranor,a dual peroxisome proliferator activated receptorα/δ(PPARα/δ)agonist,reduced inflammation and fibrosis in alcohol-associated liver disease(ALD).This letter aims to discuss the findings presented in that article.ALD is a global health problem,and no effective drugs has been approved by the Food and Drug Administration to cure it.Thus,finding targeted therapies is of great urgency.Herein,we focus on the pathogenesis of ALD and the role of PPARα/δin its development.Consistent with the conclusion of the article of interest,we think that elafibranor may be a promising therapeutic option for ALD,due to the pivotal involvement of PPARα/δin the pathogenesis of the disease.However,its treatment dose,timing,and side effects need to be further investigated in future studies.
基金Supported by National Natural Science Foundation of China,No.82172754 and No.81874208Natural Science Foundation Project of Hubei Province,No.2021CFB562.
文摘In this letter,we review the article“Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease”.We focus specifically on the detrimental effects of alcohol-associated liver disease(ALD)on human health.Given its insidious onset and increasing incidence,increasing awareness of ALD can contribute to reducing the prevalence of liver diseases.ALD comprises a spectrum of several different disorders,including liver steatosis,steatohepatitis,fibrosis,cirrhosis,and hepatocellular carcinoma.The pathogenesis of ALD is exceedingly complex.Previous studies have shown that peroxisome proliferator-activated receptors(PPARs)regulate lipid metabolism,glucose homeostasis and inflammatory responses within the organism.Additionally,their dysfunction is a major contributor to the progression of ALD.Elafibranor is an oral,dual PPARαandδagonist.The effectiveness of elafibranor in the treatment of ALD remains unclear.In this letter,we emphasize the harm of ALD and the burden it places on society.Furthermore,we summarize the clinical management of all stages of ALD and present new insights into its pathogenesis and potential therapeutic targets.Additionally,we discuss the mechanisms of action of PPARαandδagonists,the significance of their antifibrotic effects on ALD and future research directions.
文摘We comment on an article by Koizumi et al.Elafibranor(EFN)is a dual pero-xisome proliferator-activated receptorα/δagonist.The experimental results from Koizumi et al demonstrated that EFN significantly increases intestinal barrier function and ameliorates liver fibrosis.These positive outcomes suggest that EFN could be a promising therapeutic option for alcohol-associated liver disease(ALD).However,this study has limitations that necessitate further research to evaluate the efficacy of EFN.Future studies should consider the use of more appropriate animal models and cell types,optimize the administration routes and dosages of the drug,and conduct an in-depth investigation into the underlying mechanisms of action to determine the therapeutic effects of EFN in humans.With sustained and in-depth research,EFN has the potential to emerge as a novel therapeutic agent for the treatment of ALD.