Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive speci...Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.展开更多
The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th...The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.展开更多
As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin...As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.展开更多
Dyeing wastewater has the problems of complex composition,deep color and difficulty in degradation,which seriously threaten the ecological environment.This study investigated the Ni^(2+)/peroxymonosulfate(PMS)/MXene s...Dyeing wastewater has the problems of complex composition,deep color and difficulty in degradation,which seriously threaten the ecological environment.This study investigated the Ni^(2+)/peroxymonosulfate(PMS)/MXene system for efficient degradation of the dyeing wastewater with lower metal consumption.The reactive red 24(RR24)simulated dyeing wastewater was used as the research object.The influences of mass concentrations of PMS,Ni^(2+),MXene and RR24,and initial pH values on RR24 degradation were explored.The contribution of free radicals in the degradation of dyes was investigated by free radical quench experiments.The results showed that the degradation percentage of RR24 was as high as 96.62%using a mixture of 7.5 g/L PMS,100 mg/L Ni^(2+)and 210 mg/L MXene at 25℃for 60 min.Under neutral conditions,compared with the system without Ti_(3)C_(2)MXene,the degradation percentage of RR24 increased by 2.04 times.In this system,the·OH radical played a dominant role.When the dyeing wastewater was treated by using the Ni^(2+)/PMS/MXene system,the inorganic salts significantly altered the degradation rate of the dyeing wastewater,but only slightly affected the final degradation percentage.展开更多
With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine...With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.展开更多
Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-pr...Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.展开更多
An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characteri...An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron microscopy,and Fourier‐transform infrared spectroscopy.After characterization,the MOF was used to activate peroxymonosulfate(PMS)for degradation of the refractory pollutant rhodamine B(RhB)in water.The composite prepared at a0.5:1mass ratio of Mn3O4to ZIF‐8possessed the highest catalytic activity with negligible Mn leaching.The maximum RhB degradation of approximately98%was achieved at0.4g/L0.5‐Mn/ZIF‐120,0.3g/L PMS,and10mg/L initial RhB concentration at a reaction temperature of23°C.The RhB degradation followed first‐order kinetics and was accelerated with increased0.5‐Mn/ZIF‐120and PMS dosages,decreased initial RhB concentration,and increased reaction temperature.Moreover,quenching tests indicated that?OH was the predominant radical involved in the RhB degradation;the?OH mainly originated from SO4??and,hence,PMS.Mn3O4/ZIF‐8also displayed good reusability for RhB degradation in the presence of PMS over five runs,with a RhB degradation efficiency of more than96%and Mn leaching of less than5%for each run.Based on these findings,a RhB degradation mechanism was proposed.展开更多
Excitation of metal-free graphitic carbon nitride(g-C3N4) under visible light can successfully achieve efficient activation of peroxymonosulfate(PMS). Synergistic effects and involved mechanism were systematically inv...Excitation of metal-free graphitic carbon nitride(g-C3N4) under visible light can successfully achieve efficient activation of peroxymonosulfate(PMS). Synergistic effects and involved mechanism were systematically investigated using a light-inert endocrine disrupting compound, dimethyl phthalate(DMP), as the target pollutant. Under visible light irradiation, DMP could not be degraded by direct g-C3 N4-mediated photocatalysis, while in the presence of PMS, the dominant radicals were converted from ·O2 to SO4·– and ·OH, resulting in effective DMP degradation and mineralization. Results showed that higher dosage of PMS or g-C3 N4 could increase the activation amount of PMS and corresponding DMP degradation efficiency, but the latter approach was more productive in terms of making the most of PMS. High DMP concentration hindered effective contact between PMS and g-C3 N4, but could provide efficient use of PMS. Higher DMP degradation efficiency was achieved at p H lower than the point of zero charge(5.4). Based on intermediates identification, the DMP degradation was found mainly through radical attack(·OH and SO4·–) of the benzene ring and oxidation of the aliphatic chains.展开更多
Methotrexate(MTX)is one of the most consumed anti-cancer drugs in the pharmaceutical market around the world.The widespread occurrence of MTX in aquatic environment through hospital effluent has attracted increasing c...Methotrexate(MTX)is one of the most consumed anti-cancer drugs in the pharmaceutical market around the world.The widespread occurrence of MTX in aquatic environment through hospital effluent has attracted increasing concern due to its potential to induce water pollution.In the present study,the degradation of MTX in aqueous medium was investigated by UV-activated peroxymonosulfate(PMS).A significant improvement in degradation rate by increasing UV intensity and PMS concentration while the decrease in degradation efficiency with the increase of solution p H and initial concentration of MTX was observed.The proposed UV/PMS process could achieve more than 90%MTX degradation in 30 min with a good mineralization degree(65%).A pseudofirst order kinetic model was employed and successfully predicted the degradation of MTX.The effect of other operational parameters such as the initial concentration of the targeted compound,dosage of oxidant(PMS),solution p H and UV intensity on the degradation rate were investigated.At the last,the main transform intermediates were identified using LC–MS and possible degradation pathways were proposed.The results show that UV/PMS can be used as an efficient technology to treat pharmaceuticals such as methotrexate containing water and wastewater.展开更多
Sulfate radical-advanced oxidation processes(SR-AOPs)are promising technologies for organic pollutants elimination.Heterogeneous metal-based catalysis has been widely studied and applied to activate peroxymonosulfate(...Sulfate radical-advanced oxidation processes(SR-AOPs)are promising technologies for organic pollutants elimination.Heterogeneous metal-based catalysis has been widely studied and applied to activate peroxymonosulfate(PMS)for producing sulfate radicals.Developing highly efficient catalysts is crucial for future extensive use.Importantly,the catalytic activity is mainly determined by mass and electron transfer.This paper aims to overview the recent enhancement strategies for developing heterogeneous metalbased catalysts as effective PMS activators.The main strategies,including surface engineering,structural engineering,electronic modulation,external energy assistance,and membrane filtration enhancement,are summarized.The potential mechanisms for improving catalytic activity are also introduced.Finally,the challenges and future research prospects of heterogenous metal-based catalysis in SR-AOPs are proposed.This work is hoped to guide the rational design of highly efficient heterogenous catalysts in SR-AOPs.展开更多
Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially des...Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially designed a perovskite oxide with abundant oxygen vacancies,SrCo_(0.8)Fe_(0.2)O_(3)(SCF),and firstly applied it as a catalyst in peroxymonosulfate(PMS) activation towards organic pollutants degradation.The result revealed that the prepared SCF catalyst exhibited excellent performance on organic compounds degradation.Besides,SCF showed much better activity than La_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3)(LSCF) in terms of reaction rate and stability for the degradation of the organic compounds.Based on the analysis of scanning electron microscope,transmission electron microscope,X-ray diffraction,N_(2) adsorption-desorption,X-ray photoelectron spectroscopy and electron paramagnetic resonance,it was confirmed that the perovskite catalysts with high content of Sr doping at A-site could effectively create a defect-rich surface and optimize its physicochemical properties,which was responsible for the excellent heterogeneous catalytic activity of SCF.SCF can generate three highly active species:~1 O_(2),SO_(4)^(-)· and ·OH in PMS activation,revealing the degradation process of organic compounds was a coupled multiple active species in both radical and nonradical pathway.Moreover,it was mainly in a radical pathway in the degradation through PMS activation on SCF and SO_(4)^(-)· radicals produced were the dominant species in SCF/PMS system.This study demonstrated that perovskite-type catalysts could enrich OVs efficiently by doping strategy and regulate the PMS activation towards sulfate radical-based AOPs.展开更多
The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' ...The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' recombination rate,as well as wider and stronger visible light absorption capacity.Since the synergistic effect between g-C_(3 )N_(4) and MnFe_(2) O_(4),the photogene rated electron could transfer from g-C3 N4 to MnFe_(2) O_(4),which could promote the migration of electrons as well as enhance the photocatalytic activity and peroxymonosulfate(PMS) activation efficiency.Mn/G/D-5% composite displayed the excellent degradation performance of bisphenol A(BPA) with the removal efficiency of 99.9% under PMS/Vis system,which was approximately 2.47 and 63.8 times as high as that of the Mn/G/D-5%/PMS and Mn/G/D-5%/Vis system,respectively.Moreover,negative electricity derived from diatomite surface also promoted the photogenerated carriers' migration,and the degradation rate constant was around 2.4 times higher than that of MnFe_(2) O_(4)/g-C_(3) N_(4)(Mn/G).In addition,quenching experiments showed that both radical pathway(h^(+),·OH,·O_(2)^(-)and SO_(4)·^(-)) and non-radical pathway(^(1) O_(2)) were responsible for the degradation of BPA.展开更多
β-lactam antibiotics in aquatic environment have severely damaged ecological stability and caused a series of environmental pollution problems to be solved urgently.Herein,a novel composite photocatalyst prepared by ...β-lactam antibiotics in aquatic environment have severely damaged ecological stability and caused a series of environmental pollution problems to be solved urgently.Herein,a novel composite photocatalyst prepared by loading carbon dots(CDs)onto rod-like CoFe_(2)O_(4)(CFO),which can effectively degrade amoxicillin(AMX)by photocata lytic/peroxy mono sulfate(PMS)activation under visible light irradiation.The degradation results exhibits that the optimal degradation efficiency with 97.5%within 80 min is achievd by the CDs-CFO-5 composite.Such enhanced activity is ascribed to the introduction of CDs that effectively improves the separation efficiency of photogenerated electron pairs and creates new active sites as electron bridges that improve the photocata lytic performance.More importantly,a strong synergistic between CDs and photo-induced electrons generated from CFO can further activiate PMS to provide more SO4-·and·OH radicals for boosting the degradation ability towards AMX.The present study aims to elucidate positive role of CDs in photocata lytic/peroxy monosulfate activation during the degradation reaction.展开更多
Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese o...Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese oxide(K_(2-x)Mn_(8)O_(16):abbreviation KMnO).However,the limited catalytic performance of KMnO limits its practical application.In this work,iron-doped KMnO(Fe-KMnO)was prepared by one-step hydrothermal method to optimize its catalytic performance.Compared with KMnO/PMS system,Fe-KMnO/PMS system possessed more excellent removal efficiency of tetracycline(TC).Meanwhile,the Fe-KMnO/PMS system also exhibited good practical application potential and excellent stability.The mechanism of Fe-KMnO activation of PMS was further analyzed in detail.It was found that Fe participated in the redox of high-valent Mn,which promoted the activation of PMS.Moreover,The Fe site as an adsorption site enhanced the TC enrichment ability of the catalyst,reducing the mass transfer resistance and further enhancing the TC removal ability of Fe-KMnO/PMS system.This work not only provides an excellent PMS catalyst,but also offers new insights into the mechanism of PMS activation by bimetallic manganese-based catalysts.展开更多
Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation r...Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene.展开更多
Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu...Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu(Ⅱ)/Cu(Ⅰ)and Fe(Ⅲ)/Fe(Ⅱ)cycles.Innovatively,we observed a significant enhancement on the degradation of organic contaminants when Cu(Ⅱ)and Fe(Ⅲ)were coupled to activate PMS in borate(BA)buffer.The degradation efficiency of Rhodamine B(RhB,20μmol/L)reached up to 96.3%within 10 min,which was higher than the sum of individual Cu(Ⅱ)-and Fe(Ⅲ)-activated PMS process.Sulfate radical,hydroxyl radical and high-valent metal ions(i.e.,Cu(Ⅲ)and Fe(IV))were identified as the working reactive species for RhB removal in Cu(Ⅱ)/Fe(Ⅲ)/PMS/BA system,while the last played a predominated role.The presence of BA dramatically facilitated the reduction of Cu(Ⅱ)to Cu(Ⅰ)via chelating with Cu(Ⅱ)followed by Fe(Ⅲ)reduction by Cu(Ⅰ),resulting in enhanced PMS activation by Cu(Ⅰ)and Fe(Ⅱ)as well as accelerated generation of reactive species.Additionally,the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(Ⅱ)and Fe(Ⅲ).In a word,this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.展开更多
In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_...In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_(2),Pd/CeO_(2),Pd/TiO_(2)and Pd/Al2O3),Pd/TiO_(2)exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content.Pd/TiO_(2)prepared by the deposition method leads to high Pd dispersion,which are the key factors for efficient BPF degradation.The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed.Density functional theory(DFT)calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles.The catalytic activities are strongly dependent on the structural features of the catalysts.Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.展开更多
The contamination of water resources by phenolic compounds(PCs)presents a significant environmental hazard,necessitating the development of novel materials and methodologies for effective mitigation.In this study,a me...The contamination of water resources by phenolic compounds(PCs)presents a significant environmental hazard,necessitating the development of novel materials and methodologies for effective mitigation.In this study,a metallic copper-doped zeolitic imidazolate framework was pyrolyzed and designated as CuNC-20 for the activation of peroxymonosulfate(PMS)to degrade phenol(PE).Cu-NC-20 could effectively address the issue of metal agglomeration while simultaneously diminishing copper dissolution during the activation of PMS reactions.The Cu-NC-20 catalyst exhibited a rapid degradation rate for PE across a broad pH range(3-9)and demonstrated high tolerance towards coexisting ions.According to scavenger experiments and electron paramagnetic resonance analysis,singlet oxygen(^(1)O_(2))and high-valent copperoxo(Cu(Ⅲ))were the predominant reactive oxygen species,indicating that the system was nonradicaldominated during the degradation process.The quantitative structure-activity relationship(QSAR)between the oxidation rate constants of various substituted phenols and Hammett constants was established.It indicated that the Cu-NC-20/PMS system had the optimal oxidation rate constant withσ^(-)correlation and exhibited a typical electrophilic reaction pattern.This study provides a comprehensive understanding of the heterogeneous activation process for the selective removal of phenolic compounds.展开更多
In this work,an invasive plant(Aster subulatus Michx)mesopore laminar biochar loaded with transition metal Co(CoS@MLBC)was synthesized by a one-step hydrothermal carbonization way for activating peroxymonosulfate(PMS)...In this work,an invasive plant(Aster subulatus Michx)mesopore laminar biochar loaded with transition metal Co(CoS@MLBC)was synthesized by a one-step hydrothermal carbonization way for activating peroxymonosulfate(PMS)to remove antibiotics in water.We characterized the structure and morphology of CoS@MLBC and tested its performance.The results showed that the carbon nitride structure was formed on CoS@MLBC,which improved its adsorption capacity for antibiotics and PMS.In addition,Co-doping significantly enhanced the PMS activity and efficiently degraded ciprofloxacin(CIP)over a wide pH range.It was identified that radical and non-radical synergistic action had a critical effect on the CIP degradation process.Furthermore,CoS@MLBC could completely remove CIP within 10 min and had a high removal efficiency(98%)after four cycles.Three possible pathways of the CIP degradation process with 12 intermediates were proposed and their ecotoxicity was analyzed.This work provides a new perspective for preparing biochar from invasive plants for the degradation of antibiotics in water,realizing the concept of“treating the wastes with wastes”.展开更多
The adsorption of peroxymonosulfate(PMS)is crucial for PMS activation in the heterogeneous advanced oxidation processes.However,the investigation of PMS adsorption on the piezocatalysts still remains insufficient.In t...The adsorption of peroxymonosulfate(PMS)is crucial for PMS activation in the heterogeneous advanced oxidation processes.However,the investigation of PMS adsorption on the piezocatalysts still remains insufficient.In this work,bismuth oxychloride(BiO Cl)nanosheets were prepared as the piezocatalysts for PMS activation under ultrasonic vibration to remove carbamazepine(CBZ)in aqueous solutions.Up to92.5%of CBZ was degraded for 40 min in Bi OCl piezo-activated PMS system with the reaction rate constant of 0.0741 min-1,being 1.63 times that of the sum of BiOCl piezocatalysis,BiOCl-activated PMS,and vibration-activated PMS.PMS adsorption on the surface of BiOCl was specifically studied by comparing the microscopic structure change of the fresh and used Bi OCl.The results suggested that the piezoelectric field of Bi OCl was able to promote the tight adsorption of PMS on the surface,thus facilitating the fast activation of PMS through electrons transfer to produce reactive species(HO·,SO_(4)·-,O_(2)·-,1O_(2)).This work presents an in-depth understanding for the role of piezoelectric effect on the adsorption and activation of PMS.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21972073,22136003,22206188,and 21805166).
文摘Advanced processes for peroxymonosulfate(PMS)-based oxidation are efficient in eliminating toxic and refractory organic pol-lutants from sewage.The activation of electron-withdrawing HSO_(5)^(-)releases reactive species,including sulfate radical(·SO_(4)^(-)),hydroxyl radical(·OH),superoxide radical(·O_(2)^(-)),and singlet oxygen(1O_(2)),which can induce the degradation of organic contaminants.In this work,we synthesized a variety of M-OMS-2 nanorods(M=Co,Ni,Cu,Fe)by doping Co^(2+),Ni^(2+),Cu^(2+),or Fe^(3+)into manganese oxide oc-tahedral molecular sieve(OMS-2)to efficiently remove sulfamethoxazole(SMX)via PMS activation.The catalytic performance of M-OMS-2 in SMX elimination via PMS activation was assessed.The nanorods obtained in decreasing order of SMX removal rate were Cu-OMS-2(96.40%),Co-OMS-2(88.00%),Ni-OMS-2(87.20%),Fe-OMS-2(35.00%),and OMS-2(33.50%).Then,the kinetics and struc-ture-activity relationship of the M-OMS-2 nanorods during the elimination of SMX were investigated.The feasible mechanism underly-ing SMX degradation by the Cu-OMS-2/PMS system was further investigated with a quenching experiment,high-resolution mass spec-troscopy,and electron paramagnetic resonance.Results showed that SMX degradation efficiency was enhanced in seawater and tap water,demonstrating the potential application of Cu-OMS-2/PMS system in sewage treatment.
基金gratefully acknowledge the financial support of the National Natural Science Foundation of China(22108145 and 21978143)the Shandong Province Natural Science Foundation(ZR2020QB189)+1 种基金State Key Laboratory of Heavy Oil Processing(SKLHOP202203008)the Talent Foundation funded by Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2201).
文摘The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.
基金funded by the Natural Science Foundation of Fujian Province(2023J05180)the President's Foundation of Minnan Normal University(KJ2021011).
文摘As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management.
基金Foundation items:Innovation and Entrepreneurship Training Program for College Students,China(No.X202410082063)Youth Foundation of Hebei Province Department of Education Fund,China(No.QN2023090)Hebei Natural Science Foundation,China(No.B2020208061)。
文摘Dyeing wastewater has the problems of complex composition,deep color and difficulty in degradation,which seriously threaten the ecological environment.This study investigated the Ni^(2+)/peroxymonosulfate(PMS)/MXene system for efficient degradation of the dyeing wastewater with lower metal consumption.The reactive red 24(RR24)simulated dyeing wastewater was used as the research object.The influences of mass concentrations of PMS,Ni^(2+),MXene and RR24,and initial pH values on RR24 degradation were explored.The contribution of free radicals in the degradation of dyes was investigated by free radical quench experiments.The results showed that the degradation percentage of RR24 was as high as 96.62%using a mixture of 7.5 g/L PMS,100 mg/L Ni^(2+)and 210 mg/L MXene at 25℃for 60 min.Under neutral conditions,compared with the system without Ti_(3)C_(2)MXene,the degradation percentage of RR24 increased by 2.04 times.In this system,the·OH radical played a dominant role.When the dyeing wastewater was treated by using the Ni^(2+)/PMS/MXene system,the inorganic salts significantly altered the degradation rate of the dyeing wastewater,but only slightly affected the final degradation percentage.
基金Supported by Research Foundation Ability Enhancement Project for Young and Middle-aged Teachers in Guangxi Universities(2023KY2049).
文摘With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3.
基金supported by the National Natural Science Foundation of China (21377169, 21507168)the Fundamental Research Funds for the Central Universities (CZW15078)the Natural Science Foundation of Hubei Province of China (2014CFC1119, 2015CFB505)~~
文摘Magnetic Cu^0/Fe3O4 submicron composites were prepared using a hydrothermal method and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS) and the degradation of organic pollutants.The as-prepared magnetic Cu^0/Fe3O4 submicron composites were composed of Cu^0 and Fe3O4 crystals and had an average size of approximately 220 nm.The Cu^0/Fe3O4 composites could efficiently catalyze the activation of PMS to generate singlet oxygen,and thus induced the rapid degradation of rhodamine B,methylene blue,orange Ⅱ,phenol and 4-chlorophenol.The use of0.1 g/L of the Cu^0/Fe3O4 composites induced the complete removal of rhodamine B(20 μmol/L) in15 min,methylene blue(20 μmol/L) in 5 min,orange Ⅱ(20 μmol/L) in 10 min,phenol(0.1mmol/L) in 30 min and 4-chlorophenol(0.1 mmol/L) in 15 min with an initial pH value of 7.0 and a PMS concentration of 0.5 mmol/L.The total organic carbon(TOC) removal higher than 85%for all of these five pollutants was obtained in 30 min when the PMS concentration was 2.5 mmol/L.The rate of degradation was considerably higher than that obtained with Cu^0 or Fe3O4 particles alone.The enhanced catalytic activity of the Cu^0/Fe3O4 composites in the activation of PMS was attributed to the synergistic effect of the Cu^0 and Fe3O4 crystals in the composites.Singlet oxygen was identified as the primary reactive oxygen species responsible for pollutant degradation by electron spin resonance and radical quenching experiments.A possible mechanism for the activation of PMS by Cu^0/Fe3O4 composites is proposed as electron transfer from the organic pollutants to PMS induces the activation of PMS to generate ^1O2,which induces the degradation of the organic pollutants.As a magnetic catalyst,the Cu^0/Fe3O4 composites were easily recovered by magnetic separation,and exhibited excellent stability over five successive degradation cycles.The present study provides a facile and green heterogeneous catalysis method for the oxidative removal of organic pollutants.
基金supported by the National Key Research and Development Program of China (2016YFB0700504)~~
文摘An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron microscopy,and Fourier‐transform infrared spectroscopy.After characterization,the MOF was used to activate peroxymonosulfate(PMS)for degradation of the refractory pollutant rhodamine B(RhB)in water.The composite prepared at a0.5:1mass ratio of Mn3O4to ZIF‐8possessed the highest catalytic activity with negligible Mn leaching.The maximum RhB degradation of approximately98%was achieved at0.4g/L0.5‐Mn/ZIF‐120,0.3g/L PMS,and10mg/L initial RhB concentration at a reaction temperature of23°C.The RhB degradation followed first‐order kinetics and was accelerated with increased0.5‐Mn/ZIF‐120and PMS dosages,decreased initial RhB concentration,and increased reaction temperature.Moreover,quenching tests indicated that?OH was the predominant radical involved in the RhB degradation;the?OH mainly originated from SO4??and,hence,PMS.Mn3O4/ZIF‐8also displayed good reusability for RhB degradation in the presence of PMS over five runs,with a RhB degradation efficiency of more than96%and Mn leaching of less than5%for each run.Based on these findings,a RhB degradation mechanism was proposed.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20160936,BK20160938)the National Natural Science Foundation of China(51708297)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘Excitation of metal-free graphitic carbon nitride(g-C3N4) under visible light can successfully achieve efficient activation of peroxymonosulfate(PMS). Synergistic effects and involved mechanism were systematically investigated using a light-inert endocrine disrupting compound, dimethyl phthalate(DMP), as the target pollutant. Under visible light irradiation, DMP could not be degraded by direct g-C3 N4-mediated photocatalysis, while in the presence of PMS, the dominant radicals were converted from ·O2 to SO4·– and ·OH, resulting in effective DMP degradation and mineralization. Results showed that higher dosage of PMS or g-C3 N4 could increase the activation amount of PMS and corresponding DMP degradation efficiency, but the latter approach was more productive in terms of making the most of PMS. High DMP concentration hindered effective contact between PMS and g-C3 N4, but could provide efficient use of PMS. Higher DMP degradation efficiency was achieved at p H lower than the point of zero charge(5.4). Based on intermediates identification, the DMP degradation was found mainly through radical attack(·OH and SO4·–) of the benzene ring and oxidation of the aliphatic chains.
基金the financial support of research grants from the Hong Kong Polytechnic University(Q67H)and Higher Education Commission(HEC),Pakistan for the financial support during IRSIP。
文摘Methotrexate(MTX)is one of the most consumed anti-cancer drugs in the pharmaceutical market around the world.The widespread occurrence of MTX in aquatic environment through hospital effluent has attracted increasing concern due to its potential to induce water pollution.In the present study,the degradation of MTX in aqueous medium was investigated by UV-activated peroxymonosulfate(PMS).A significant improvement in degradation rate by increasing UV intensity and PMS concentration while the decrease in degradation efficiency with the increase of solution p H and initial concentration of MTX was observed.The proposed UV/PMS process could achieve more than 90%MTX degradation in 30 min with a good mineralization degree(65%).A pseudofirst order kinetic model was employed and successfully predicted the degradation of MTX.The effect of other operational parameters such as the initial concentration of the targeted compound,dosage of oxidant(PMS),solution p H and UV intensity on the degradation rate were investigated.At the last,the main transform intermediates were identified using LC–MS and possible degradation pathways were proposed.The results show that UV/PMS can be used as an efficient technology to treat pharmaceuticals such as methotrexate containing water and wastewater.
基金financially supported by the National Natural Science Foundation of China(21938009)。
文摘Sulfate radical-advanced oxidation processes(SR-AOPs)are promising technologies for organic pollutants elimination.Heterogeneous metal-based catalysis has been widely studied and applied to activate peroxymonosulfate(PMS)for producing sulfate radicals.Developing highly efficient catalysts is crucial for future extensive use.Importantly,the catalytic activity is mainly determined by mass and electron transfer.This paper aims to overview the recent enhancement strategies for developing heterogeneous metalbased catalysts as effective PMS activators.The main strategies,including surface engineering,structural engineering,electronic modulation,external energy assistance,and membrane filtration enhancement,are summarized.The potential mechanisms for improving catalytic activity are also introduced.Finally,the challenges and future research prospects of heterogenous metal-based catalysis in SR-AOPs are proposed.This work is hoped to guide the rational design of highly efficient heterogenous catalysts in SR-AOPs.
基金supported by the National Key Research and Development Program of China (Project No.2018YFB1502903)。
文摘Metal-based perovskite oxides have contributed significantly to the advanced oxidation processes(AOPs)due to their diverse active sites and excellent compositional/structural flexibility.In this study,we specially designed a perovskite oxide with abundant oxygen vacancies,SrCo_(0.8)Fe_(0.2)O_(3)(SCF),and firstly applied it as a catalyst in peroxymonosulfate(PMS) activation towards organic pollutants degradation.The result revealed that the prepared SCF catalyst exhibited excellent performance on organic compounds degradation.Besides,SCF showed much better activity than La_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3)(LSCF) in terms of reaction rate and stability for the degradation of the organic compounds.Based on the analysis of scanning electron microscope,transmission electron microscope,X-ray diffraction,N_(2) adsorption-desorption,X-ray photoelectron spectroscopy and electron paramagnetic resonance,it was confirmed that the perovskite catalysts with high content of Sr doping at A-site could effectively create a defect-rich surface and optimize its physicochemical properties,which was responsible for the excellent heterogeneous catalytic activity of SCF.SCF can generate three highly active species:~1 O_(2),SO_(4)^(-)· and ·OH in PMS activation,revealing the degradation process of organic compounds was a coupled multiple active species in both radical and nonradical pathway.Moreover,it was mainly in a radical pathway in the degradation through PMS activation on SCF and SO_(4)^(-)· radicals produced were the dominant species in SCF/PMS system.This study demonstrated that perovskite-type catalysts could enrich OVs efficiently by doping strategy and regulate the PMS activation towards sulfate radical-based AOPs.
基金the financial support provided by the Beijing Natural Science Foundation (2202044)the Fok Ying Tung Education Foundation, China (171042)+1 种基金the National Postdoctoral Program for Innovative Talents (BX20190370)the Fundamental Research Funds for the Central Universities (2021JCCXHH04)。
文摘The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' recombination rate,as well as wider and stronger visible light absorption capacity.Since the synergistic effect between g-C_(3 )N_(4) and MnFe_(2) O_(4),the photogene rated electron could transfer from g-C3 N4 to MnFe_(2) O_(4),which could promote the migration of electrons as well as enhance the photocatalytic activity and peroxymonosulfate(PMS) activation efficiency.Mn/G/D-5% composite displayed the excellent degradation performance of bisphenol A(BPA) with the removal efficiency of 99.9% under PMS/Vis system,which was approximately 2.47 and 63.8 times as high as that of the Mn/G/D-5%/PMS and Mn/G/D-5%/Vis system,respectively.Moreover,negative electricity derived from diatomite surface also promoted the photogenerated carriers' migration,and the degradation rate constant was around 2.4 times higher than that of MnFe_(2) O_(4)/g-C_(3) N_(4)(Mn/G).In addition,quenching experiments showed that both radical pathway(h^(+),·OH,·O_(2)^(-)and SO_(4)·^(-)) and non-radical pathway(^(1) O_(2)) were responsible for the degradation of BPA.
基金founding support from the National Natural Science Foundation of China(Nos.21906072,22006057 and 31971616)the Natural Science Foundation of Jiangsu Province(BK20190982)+4 种基金“Doctor of Mass Entrepreneurship and Innovation”Project in Jiangsu Province,Henan Postdoctoral Foundation(202003013)Doctoral Scientific Research Foundation of Jiangsu University of Science and Technology(China)(1062931806 and 1142931803)the Science and Technology Research Project of the Department of Education of Jilin Province(JJKH20200039KJ)the Science and Technology Research Project of Jilin City(20190104120,201830811)the Project of Jilin Provincial Science and Technology Development Plan(20190201277JC,20200301046RQ,YDZJ202101ZYTS070)。
文摘β-lactam antibiotics in aquatic environment have severely damaged ecological stability and caused a series of environmental pollution problems to be solved urgently.Herein,a novel composite photocatalyst prepared by loading carbon dots(CDs)onto rod-like CoFe_(2)O_(4)(CFO),which can effectively degrade amoxicillin(AMX)by photocata lytic/peroxy mono sulfate(PMS)activation under visible light irradiation.The degradation results exhibits that the optimal degradation efficiency with 97.5%within 80 min is achievd by the CDs-CFO-5 composite.Such enhanced activity is ascribed to the introduction of CDs that effectively improves the separation efficiency of photogenerated electron pairs and creates new active sites as electron bridges that improve the photocata lytic performance.More importantly,a strong synergistic between CDs and photo-induced electrons generated from CFO can further activiate PMS to provide more SO4-·and·OH radicals for boosting the degradation ability towards AMX.The present study aims to elucidate positive role of CDs in photocata lytic/peroxy monosulfate activation during the degradation reaction.
基金supported by the National Natural Science Foundation of China (21806115)Sichuan Science and Technology Program (2020YJ0149)+1 种基金the Power Construction of China (P42819,DJ-ZDXM-2019-42)the Supported by Sichuan Science and Technology Program (2021ZDZX0012)。
文摘Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese oxide(K_(2-x)Mn_(8)O_(16):abbreviation KMnO).However,the limited catalytic performance of KMnO limits its practical application.In this work,iron-doped KMnO(Fe-KMnO)was prepared by one-step hydrothermal method to optimize its catalytic performance.Compared with KMnO/PMS system,Fe-KMnO/PMS system possessed more excellent removal efficiency of tetracycline(TC).Meanwhile,the Fe-KMnO/PMS system also exhibited good practical application potential and excellent stability.The mechanism of Fe-KMnO activation of PMS was further analyzed in detail.It was found that Fe participated in the redox of high-valent Mn,which promoted the activation of PMS.Moreover,The Fe site as an adsorption site enhanced the TC enrichment ability of the catalyst,reducing the mass transfer resistance and further enhancing the TC removal ability of Fe-KMnO/PMS system.This work not only provides an excellent PMS catalyst,but also offers new insights into the mechanism of PMS activation by bimetallic manganese-based catalysts.
基金Supported by Guigang City Science Research and Technology Development Plan Project(GUIKEJI2203014).
文摘Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene.
基金supported by the Sichuan Science and Technology Program(No.2021YJ0385)the Project in Yangtze River Ecological Environment Protection and Restoration(No.2022-LHYJ-02-0509-08).
文摘Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate(PMS)activation,however,neither Cu(Ⅱ)nor Fe(Ⅲ)shows efficient catalytic performance because of the slow rates of Cu(Ⅱ)/Cu(Ⅰ)and Fe(Ⅲ)/Fe(Ⅱ)cycles.Innovatively,we observed a significant enhancement on the degradation of organic contaminants when Cu(Ⅱ)and Fe(Ⅲ)were coupled to activate PMS in borate(BA)buffer.The degradation efficiency of Rhodamine B(RhB,20μmol/L)reached up to 96.3%within 10 min,which was higher than the sum of individual Cu(Ⅱ)-and Fe(Ⅲ)-activated PMS process.Sulfate radical,hydroxyl radical and high-valent metal ions(i.e.,Cu(Ⅲ)and Fe(IV))were identified as the working reactive species for RhB removal in Cu(Ⅱ)/Fe(Ⅲ)/PMS/BA system,while the last played a predominated role.The presence of BA dramatically facilitated the reduction of Cu(Ⅱ)to Cu(Ⅰ)via chelating with Cu(Ⅱ)followed by Fe(Ⅲ)reduction by Cu(Ⅰ),resulting in enhanced PMS activation by Cu(Ⅰ)and Fe(Ⅱ)as well as accelerated generation of reactive species.Additionally,the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(Ⅱ)and Fe(Ⅲ).In a word,this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.
基金supported by the National Natural Science Foundation of China(NSFC)(No.21978137).
文摘In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_(2),Pd/CeO_(2),Pd/TiO_(2)and Pd/Al2O3),Pd/TiO_(2)exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content.Pd/TiO_(2)prepared by the deposition method leads to high Pd dispersion,which are the key factors for efficient BPF degradation.The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed.Density functional theory(DFT)calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles.The catalytic activities are strongly dependent on the structural features of the catalysts.Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.
基金the financial support from Sichuan Program of Science and Technology(No.2021ZDZX0012)the National Natural Science Foundation of China(No.52200105)。
文摘The contamination of water resources by phenolic compounds(PCs)presents a significant environmental hazard,necessitating the development of novel materials and methodologies for effective mitigation.In this study,a metallic copper-doped zeolitic imidazolate framework was pyrolyzed and designated as CuNC-20 for the activation of peroxymonosulfate(PMS)to degrade phenol(PE).Cu-NC-20 could effectively address the issue of metal agglomeration while simultaneously diminishing copper dissolution during the activation of PMS reactions.The Cu-NC-20 catalyst exhibited a rapid degradation rate for PE across a broad pH range(3-9)and demonstrated high tolerance towards coexisting ions.According to scavenger experiments and electron paramagnetic resonance analysis,singlet oxygen(^(1)O_(2))and high-valent copperoxo(Cu(Ⅲ))were the predominant reactive oxygen species,indicating that the system was nonradicaldominated during the degradation process.The quantitative structure-activity relationship(QSAR)between the oxidation rate constants of various substituted phenols and Hammett constants was established.It indicated that the Cu-NC-20/PMS system had the optimal oxidation rate constant withσ^(-)correlation and exhibited a typical electrophilic reaction pattern.This study provides a comprehensive understanding of the heterogeneous activation process for the selective removal of phenolic compounds.
基金supported by the Major Science and Technology Project from the Ministry of Water Resources(SKS-2022069)Science and Technology Program of Inner Mongolia Autonomous Region(2021GG0089)+1 种基金Postdoctoral Innovative Talent Support Program of Chongqing,China,2020,and Natural Science Foundation of Chongqing,China(cstc2021jcyj-bshX0104 and cstc2021jcyj-msxmX0163)National Natural Science Foundation of China(22306181).
文摘In this work,an invasive plant(Aster subulatus Michx)mesopore laminar biochar loaded with transition metal Co(CoS@MLBC)was synthesized by a one-step hydrothermal carbonization way for activating peroxymonosulfate(PMS)to remove antibiotics in water.We characterized the structure and morphology of CoS@MLBC and tested its performance.The results showed that the carbon nitride structure was formed on CoS@MLBC,which improved its adsorption capacity for antibiotics and PMS.In addition,Co-doping significantly enhanced the PMS activity and efficiently degraded ciprofloxacin(CIP)over a wide pH range.It was identified that radical and non-radical synergistic action had a critical effect on the CIP degradation process.Furthermore,CoS@MLBC could completely remove CIP within 10 min and had a high removal efficiency(98%)after four cycles.Three possible pathways of the CIP degradation process with 12 intermediates were proposed and their ecotoxicity was analyzed.This work provides a new perspective for preparing biochar from invasive plants for the degradation of antibiotics in water,realizing the concept of“treating the wastes with wastes”.
基金financially supported by the National Natural Science Foundation of China(No.22006052)the Science and Technology Program of Guangzhou,China(No.202201020545)。
文摘The adsorption of peroxymonosulfate(PMS)is crucial for PMS activation in the heterogeneous advanced oxidation processes.However,the investigation of PMS adsorption on the piezocatalysts still remains insufficient.In this work,bismuth oxychloride(BiO Cl)nanosheets were prepared as the piezocatalysts for PMS activation under ultrasonic vibration to remove carbamazepine(CBZ)in aqueous solutions.Up to92.5%of CBZ was degraded for 40 min in Bi OCl piezo-activated PMS system with the reaction rate constant of 0.0741 min-1,being 1.63 times that of the sum of BiOCl piezocatalysis,BiOCl-activated PMS,and vibration-activated PMS.PMS adsorption on the surface of BiOCl was specifically studied by comparing the microscopic structure change of the fresh and used Bi OCl.The results suggested that the piezoelectric field of Bi OCl was able to promote the tight adsorption of PMS on the surface,thus facilitating the fast activation of PMS through electrons transfer to produce reactive species(HO·,SO_(4)·-,O_(2)·-,1O_(2)).This work presents an in-depth understanding for the role of piezoelectric effect on the adsorption and activation of PMS.