Peroxyoxalate chemiluminescence was, for the first time, examined by using ternary mixed solutions of water-hydrophilic/hydrophobic organic solvent. Eosin Y as a model fluorescence compound was dissolved with the tern...Peroxyoxalate chemiluminescence was, for the first time, examined by using ternary mixed solutions of water-hydrophilic/hydrophobic organic solvent. Eosin Y as a model fluorescence compound was dissolved with the ternary solutions of water (1.0 mM carbonate buffer, pH 9.0)-acetonitrile-ethyl acetate, water-rich of 15:3:2 volume ratio and organic solvent-rich of 3:8:4 volume ratio, to which bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide chemiluminescence reagent were added. The chemiluminescence observed with the ternary solutions, especially the organic solvent-rich solution, showed a larger signal than that observed with the water only solution or water-acetonitrile mixed solution. Chemiluminescence in the presence of twenty types of α-amino acid was similarly examined by using the ternary organic solvent-rich solution. The chemiluminescence of three α-amino acids with fluorescence properties was enhanced with the ternary solution. The data reported here may contribute to development of a new, sensitive peroxyoxalate chemiluminescence detection system.展开更多
A novel peroxyoxalate chemiluminescence system has been designed for the determination of Triton X-100 (TX-100), in which a hydrophobic fluorescent conjugated polymer, poly[2,5-bisnonyloxy-1,4-phenyleneethynylene-9,...A novel peroxyoxalate chemiluminescence system has been designed for the determination of Triton X-100 (TX-100), in which a hydrophobic fluorescent conjugated polymer, poly[2,5-bisnonyloxy-1,4-phenyleneethynylene-9,10-anthrylene] (PPEA) was employed as a fluorophor. A strong enhanced intensity of chemiluminescence (CL) was observed in the presence of TX-100, due to the improved emission efficiency of PPEA in the presence of TX-100. Under optimum conditions, the detection range of Triton X-100 is between 1.0 ×10 ^-7 and 1.0 ×10 ^-4 mol·L ^-1, with a detection limit at 6.0×10 ^-8 moloL 1. The relative standard deviation is 2.4% (n=6) for 1.0×10 ^-6 mol·L ^-1Triton X-100. This method provides satisfying results in the detection of TX-100 in nature water and biological samples with high sensitivity and wide linear range.展开更多
The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture...The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.展开更多
文摘Peroxyoxalate chemiluminescence was, for the first time, examined by using ternary mixed solutions of water-hydrophilic/hydrophobic organic solvent. Eosin Y as a model fluorescence compound was dissolved with the ternary solutions of water (1.0 mM carbonate buffer, pH 9.0)-acetonitrile-ethyl acetate, water-rich of 15:3:2 volume ratio and organic solvent-rich of 3:8:4 volume ratio, to which bis(2,4,6-trichlorophenyl) oxalate and hydrogen peroxide chemiluminescence reagent were added. The chemiluminescence observed with the ternary solutions, especially the organic solvent-rich solution, showed a larger signal than that observed with the water only solution or water-acetonitrile mixed solution. Chemiluminescence in the presence of twenty types of α-amino acid was similarly examined by using the ternary organic solvent-rich solution. The chemiluminescence of three α-amino acids with fluorescence properties was enhanced with the ternary solution. The data reported here may contribute to development of a new, sensitive peroxyoxalate chemiluminescence detection system.
基金Project supported by the National Natural Science Foundation of China (No. 20875003).
文摘A novel peroxyoxalate chemiluminescence system has been designed for the determination of Triton X-100 (TX-100), in which a hydrophobic fluorescent conjugated polymer, poly[2,5-bisnonyloxy-1,4-phenyleneethynylene-9,10-anthrylene] (PPEA) was employed as a fluorophor. A strong enhanced intensity of chemiluminescence (CL) was observed in the presence of TX-100, due to the improved emission efficiency of PPEA in the presence of TX-100. Under optimum conditions, the detection range of Triton X-100 is between 1.0 ×10 ^-7 and 1.0 ×10 ^-4 mol·L ^-1, with a detection limit at 6.0×10 ^-8 moloL 1. The relative standard deviation is 2.4% (n=6) for 1.0×10 ^-6 mol·L ^-1Triton X-100. This method provides satisfying results in the detection of TX-100 in nature water and biological samples with high sensitivity and wide linear range.
文摘The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.