In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ...In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength.展开更多
Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2...Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2-Si_(2)O1_(2)(YMAS)with multiple cationic sites is chosen as host of Cr^(3+)to synthesize YMAS:xCr^(3+)phosphors.In YMAS,Cr^(3+)ions occupy simultaneously Al/SiO4 tetrahedral,Mg/AlO6 octahedral,and Y/MgO8 dodecahedral sites which form three luminescent centers named as Cr1,Cr2,and Cr3,respectively.Cr1 and Cr2 relate to an intermediate crystal field,with transitions of^(2)E→^(4)A_(2)and^(4)T_(2)→^(4)A_(2)occurring simultaneously.As Cr^(3+)concentration increases,the^(4)T_(2)→^(4)A_(2)transition becomes more pronounced in Cr1 and Cr2,resulting in a red-shift and broadband emission.Cr3 consistently behaves a weak crystal field and exhibits the broad and long-wavelength emission.Wide-range NIR emission centering at 745 nm is realized in YMAS:0.03Cr^(3+)phosphor.This phosphor has high internal quantum efficiency(IQE?86%)and satisfying luminescence thermal stability(I423 K?70.2%).Using this phosphor,NIR pc-LEDs with 56.6 mW@320 mA optical output power is packaged and applied.Present study not only demonstrates the Cr^(3+)multi-site occupancy in a certain oxide but also provides a reliable approach via choosing a host with diverse cationic sites and local environments for Cr^(3+)to achieve broadband NIR phosphors.展开更多
Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have ...Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.展开更多
Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to st...Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.展开更多
Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu...Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu prepared in an oxidizing atmosphere, N^2 + O2. However, such an abnormal reduction process could not be performed in Sr3Al2O6:Eu, which was also prepared in an atmosphere of N^2 + O2. Moreover, even though Sr3A1EO6:Eu was synthesized in a reducing condition CO, only part of the Eu^3 + ions was reduced to Eu^2 + . The existence of trivalent and divalent europium ions was confirmed by photoluminescent spectra. The different valence-change behaviors of europium ions in the hosts were attributed to the difference in host crystal structures. The higher the crystal structure stiffness, the easier the reduction process from Eu^3 + to Eu^2 + .展开更多
Ce3+-activated yttrium aluminum garnet (YAG) was prepared by the solid-state reaction, in which H3BO3, LiF, NaF, KF and BaF2 were used as the fluxes. The effect of fluxes on optical properties of phosphors was stud...Ce3+-activated yttrium aluminum garnet (YAG) was prepared by the solid-state reaction, in which H3BO3, LiF, NaF, KF and BaF2 were used as the fluxes. The effect of fluxes on optical properties of phosphors was studied in detail, especially the fluxes of alkali fluorides, which could enhance the emission intensity and change the wavelength of emission peaks. Among these YAG:Ce phosphors, the phosphor sintered with H3BO3 and NaF exhibited the strongest emission. The emission peaks of phosphors prepared with fluxes from LiF to KF were shifted to long wavelength. The effect of NaF concentration on the emission intensity of YAG:Ce was also investigated. The value of emission intensity reached the maximum when the concentration of NaF was 0.5%.展开更多
CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It...CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It was found that the optimal sintering temperature and sintering time were 1200 °C and 4 h,respectively.The optimal concentration of doped Eu3+ was 3 mol.%.Furthermore,under ultraviolet excitation with a wavelength of 254 nm,these samples showed red luminescence which were probably attributed to...展开更多
Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microsco...Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.展开更多
Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characte...Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.展开更多
Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature hi...Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.展开更多
Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their cryst...Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their crystal structure and luminescent properties were investigated by X-ray diffraction (XRD) and fluorescent spectrofluorometer. XRD patterns demonstrate that a well-crystalline structure forms in the phosphors when they are treated by calcination at 1200~C for 4 h, and the excitation spectra exhibit good absorption in the range between 350 and 420 nm. Under the irradiation of 405 nm near-ultraviolet (NUV) light, the spectra of the phosphors show a main emission peak at 601 nm attributed to the 4G5/2→6H7/2 transition of Sm3+ ions, and its intensity is greatly influenced by the concentrations of Sm3+ and Na2CO3. When the concentrations of Sm3+ ions and Na2CO3 are 2mol% and 6mol%, respectively, the optimal emission intensity can be obtained. From strong absorption in the near ultraviolet zone, the Na0.06Sm0.02Ca1.92SiO4 phosphor is a promising red-emitting phosphor for white light emitting diodes (W-LEDs).展开更多
Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a c...Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a chelating agent. TGDTA, XRD, SEM and photoluminescence spectra were used to investigate the formation process, microstructure and luminescent properties of the synthesized Sr2CeO4. The results show that the crystallization of Sr2CeO4 begins at about 800 ℃ and completes around 900 ℃ with an orthorhombic structure. When the calcination temperature is above 1000 ℃, Sr2CeO4 partly decomposes into SrCeO3. SEM studies show that the particles of Sr2CeO4 obtained at 900 ℃ are sphericallike shape and superfine with diameter below 100 nm. The excitation spectrum of the superfine Sr2CeO4 phosphors displays a broad band with two peaks around 290 and 350 nm respectively. The former peak is stronger than the latter one. This broad band is due to the charge transfer (CT) band of the Ce^4+ ion. Excited by a radiation of 290 nm, the superfine phosphors emit a strong blue-white fluorescence, and the emission spectrum shows a broad band with a peak around 470 nm, which can be assigned to the f→t1g transition of Ce^4+ . It is found that the emission intensity is affected by the calcination temperature.展开更多
Nano-sized SrAl2O4:Eu^2+,Dy^3+ phosphors with good monodispersity and narrow size distribution were synthesized by the coupling of water-in-oil (W/O) microemulsion with coprecipitation method. The phase compositi...Nano-sized SrAl2O4:Eu^2+,Dy^3+ phosphors with good monodispersity and narrow size distribution were synthesized by the coupling of water-in-oil (W/O) microemulsion with coprecipitation method. The phase composition, morphology, crystallinity, excitation spectra, emission spectra, and afterglow decay of SrAl2O4:Eu^2+,Dy^3+ nanophosphors were measured. It was found that the amount of surfactant that was used had an important effect on the shape and average size of the phosphor particles. SrAl204 phase of the phosphors showed an increase with the increase in calcination temperature. When the calcination temperature reached 1150℃, the fine crystal of SrAl2O4 was formed and the long afterglow luminescence could be obviously observed. In comparison with the samples prepared by the high-temperature solid-state method, the calcination temperature showed an obvious decrease and a dear blue shift occurred in the excitation and emission spectra of the sample. The afterglow time could be more than 8 h.展开更多
YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Dopi...YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.展开更多
A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions...A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3 by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3A1206:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250℃. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250℃ lasts for over 1000 s when the excited source is cut off.展开更多
Er3+/Yb3+ co-doped Li3Ba2Gd3(MoO4)8 phosphors were synthesized by conven- tional solid state reaction method, and their structure and spectral properties were investigated. The diffuse reflectance spectra showed t...Er3+/Yb3+ co-doped Li3Ba2Gd3(MoO4)8 phosphors were synthesized by conven- tional solid state reaction method, and their structure and spectral properties were investigated. The diffuse reflectance spectra showed that the 4I15/2→4I11/2 transition of Er3+ and the 2F7/2→2F5/2 transition of Yb3+ ions were highly overlapped. Under the excitation of 980 nm, three up-conver- sion (UC) luminescence bands around 530, 555 and 660 nm were observed, corresponding to the 2H11/2→ 4I15/2, 4S3/2 → 4I15/2 and 4F9/2-→4I15/2 transitions of Er3+ ions, respectively. The effects of the concentration and pumping power on the UC intensities of Li3Ba2Gd3(MoO4)8:Er3+/yb3+ phosphors were investigated, and the possible UC mechanism was proposed based on the results.展开更多
Nitrogen-rich Eu2+-doped Ca-α-SiAlON phosphors(Cam/2-xSi12-m-nAlm+nOnN16-n:xEu) were synthesized by a freeze-drying assisted combustion synthesis(CS) route. Fast-synthesized products with high purity and uniform part...Nitrogen-rich Eu2+-doped Ca-α-SiAlON phosphors(Cam/2-xSi12-m-nAlm+nOnN16-n:xEu) were synthesized by a freeze-drying assisted combustion synthesis(CS) route. Fast-synthesized products with high purity and uniform particle morphology were confirmed by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The analysis of lattice parameters by comparison with empirical equations showed that the as-prepared phosphors had low oxygen content. A series of samples were prepared according to the stoichiometry of Cam/2-0.08Si12-mAlmN16:0.08 Eu for further research. The influences of m value on the luminescence properties were investigated in detail. As m increased, a redshift phenomenon was observed in both the excitation and emission spectra. First-principle electronic structure calculations showed that the 3d energy level of Ca played an important role in the occurrence of the redshift phenomenon.展开更多
The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The m...The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sm 3+ and Tm 3+ in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method under 1050 ℃ for 6 h have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be useful in finding some new long-lasting phosphors with different colors.展开更多
The synthesis of BaMgAl10O17: Eu^2+ (BAM) phosphors using the sol-gel method and their luminescence properties were reported. The blue-light emitting BAM was synthesized using citric acid and ethylene glycol as ch...The synthesis of BaMgAl10O17: Eu^2+ (BAM) phosphors using the sol-gel method and their luminescence properties were reported. The blue-light emitting BAM was synthesized using citric acid and ethylene glycol as chelating materials. Emission of blue-light was obtained from these phosphors. The luminescent intensity increases as the temperature of heat treatment is increased, This study investigated the effects of the molar ratio of ethylene glycol to citric acid (Ф value), with respect to the phase formation and luminescence properties of BAM. The variation of the Фvalue resulted in the change of the sol-gel reaction mechanism and the microstructures of the resultant powders. An increase in Фvalue leads to an increase in the rate of BAM phase formation. The photoluminescent intensity of the prepared phosphors increases with heating temperatures because of enhanced crystallization.展开更多
The CaLaGa3O7:Eu3+ phosphor was prepared by a chemical co-precipitation method. Field emission scanning electron microscopy (FE-SEM), laser particle size analysis, X-ray diffraction (XRD), photoluminescence (PL...The CaLaGa3O7:Eu3+ phosphor was prepared by a chemical co-precipitation method. Field emission scanning electron microscopy (FE-SEM), laser particle size analysis, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence (CL) spectra were util- ized to characterize the synthesized phosphor. The results revealed that the phosphor was composed of microspheres with a slight agglomerate phenomenon and was spherically shaped. The average grain size was about 1.0 μm. Eu3+ ions, as luminescent centers, substituted La3+ ions into the single crystal lattice of CaLaGa307 with the sites of Cs. Although the CL spectrum was greatly different from the PL spectrum, it had the strongest red emission corresponding to the 5D0→7F2 transition of Eu3+. Under the excitation of UV light (287 nm) and electron beams (1.0-7.0 kV), the chromaticity coordinates of the phosphor were found to be in the nearly red and orange light regions, respec- tively.展开更多
基金Funded by the Primary Research and Development Plan of Jiangsu Province(No.BE2016175)。
文摘In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength.
基金supported by the National Natural Science Foundation of China(No.51772330)the Fundamental Research Funds for the Central Universities of Central South University(No.506021713)the National MCF Energy R&D Program of China(No.2018YFE0306100).
文摘Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2-Si_(2)O1_(2)(YMAS)with multiple cationic sites is chosen as host of Cr^(3+)to synthesize YMAS:xCr^(3+)phosphors.In YMAS,Cr^(3+)ions occupy simultaneously Al/SiO4 tetrahedral,Mg/AlO6 octahedral,and Y/MgO8 dodecahedral sites which form three luminescent centers named as Cr1,Cr2,and Cr3,respectively.Cr1 and Cr2 relate to an intermediate crystal field,with transitions of^(2)E→^(4)A_(2)and^(4)T_(2)→^(4)A_(2)occurring simultaneously.As Cr^(3+)concentration increases,the^(4)T_(2)→^(4)A_(2)transition becomes more pronounced in Cr1 and Cr2,resulting in a red-shift and broadband emission.Cr3 consistently behaves a weak crystal field and exhibits the broad and long-wavelength emission.Wide-range NIR emission centering at 745 nm is realized in YMAS:0.03Cr^(3+)phosphor.This phosphor has high internal quantum efficiency(IQE?86%)and satisfying luminescence thermal stability(I423 K?70.2%).Using this phosphor,NIR pc-LEDs with 56.6 mW@320 mA optical output power is packaged and applied.Present study not only demonstrates the Cr^(3+)multi-site occupancy in a certain oxide but also provides a reliable approach via choosing a host with diverse cationic sites and local environments for Cr^(3+)to achieve broadband NIR phosphors.
基金financially supported by the National Natural Science Foundation of China(Grant No.51972130)the Startup Fund of Huazhong University of Science and Technologythe Director Fund of Wuhan National Laboratory for Optoelectronics
文摘Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs.
文摘Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.
基金Project supported bythe National Natural Science Foundation of China (50125258 ,60377040)
文摘Compounds of Sr3Al2O6 : Eu, SrgAl14O25 : Eu, and BaZnSiO4 : Eu were synthesized by high-temperature solid state reactions. The doping Eu^3 + ions were partially reduced to Eu^2+ in Sr4Al14O25:Eu and BaZnSiOg:Eu prepared in an oxidizing atmosphere, N^2 + O2. However, such an abnormal reduction process could not be performed in Sr3Al2O6:Eu, which was also prepared in an atmosphere of N^2 + O2. Moreover, even though Sr3A1EO6:Eu was synthesized in a reducing condition CO, only part of the Eu^3 + ions was reduced to Eu^2 + . The existence of trivalent and divalent europium ions was confirmed by photoluminescent spectra. The different valence-change behaviors of europium ions in the hosts were attributed to the difference in host crystal structures. The higher the crystal structure stiffness, the easier the reduction process from Eu^3 + to Eu^2 + .
基金supported by the Science Technology Project of Zhejiang Province (2008C21153)the National Natural Science Foundation of China (60508014 and 50772102)+1 种基金Program for New Century Excellent Talents in University (NCET-07-0786)the Nature Science Foundation of Zhejiang Province (R406007)
文摘Ce3+-activated yttrium aluminum garnet (YAG) was prepared by the solid-state reaction, in which H3BO3, LiF, NaF, KF and BaF2 were used as the fluxes. The effect of fluxes on optical properties of phosphors was studied in detail, especially the fluxes of alkali fluorides, which could enhance the emission intensity and change the wavelength of emission peaks. Among these YAG:Ce phosphors, the phosphor sintered with H3BO3 and NaF exhibited the strongest emission. The emission peaks of phosphors prepared with fluxes from LiF to KF were shifted to long wavelength. The effect of NaF concentration on the emission intensity of YAG:Ce was also investigated. The value of emission intensity reached the maximum when the concentration of NaF was 0.5%.
基金supported by High Technology Research and Development program foundation of China (2007AA06Z202) (863)Natural Science Foundation of Jilin Province of China (20070405)State Key Laboratory of Rare Earth Resource Utilization of China (R02020202K)
文摘CaAl2O4:Eu3+,R+(R=Li+,Na+,K+) red phosphors were synthesized by solid state reaction method.X-ray diffraction(XRD) and photoluminescence(PL) were employed to characterize their structural and luminescent properties.It was found that the optimal sintering temperature and sintering time were 1200 °C and 4 h,respectively.The optimal concentration of doped Eu3+ was 3 mol.%.Furthermore,under ultraviolet excitation with a wavelength of 254 nm,these samples showed red luminescence which were probably attributed to...
基金the National Natural Science Foundation of China (20376009)the Liaoning Natural Science Foundation (20032129) of China
文摘Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.
基金Project supported by the National Defence Fundamental Research Project of China
文摘Nanosized cerium-doped lutetium aluminum garnet (LuAG:Ce) phosphors were prepared by nitrate-citrate solgel combustion process using 1:1 ratio of the citrate:nitrate. The prepared LuAG:Ce phosphors were characterized by XRD, TEM, photoluminescence and radioluminescence spectra excited by UV and X-ray, respectively. The purified crystalline phase of LuAG:Ce was obtained at 900 ℃ by directly crystallizing from amorphous materials. The resultant Lu- AG:Ce phosphors were uniform and had good dispersivity with an average particle size of about 30 urn. Both photoluminescence and radioluminescence were well-known Ce^3+ emissions located in the range of 470 -600 nm consisting of two emission bands because of the transition from the lowest 5d excited state (2D) to the 4f ground state of Ce^3+, which matched well with the sensitivity curve of the Si-photodiode. There was a little red shift for the emission components from the UV-excited emission spectrum to the X-ray-excited emission spectrum. The fast scintillation decay component of 26 ns satisfies the requirements of fast scintillators.
文摘Eu^2+-doped Ba3Si6012N2 green phosphors were prepared by microwave assisted sintering method at 1275℃ for 4 h, while the counterparts using conventional solid-state reaction method were synthesized at temperature higher than 1300℃ and for to 10 h. Microwave assisted sintering could reduce the activation energy and enhance the diffu- sion rate, thus greatly improved the sintering. Moreover, the influence of Si3N4 content on phase formation, morphol- ogy, absorption, and quantum efficiency, and photoluminescence properties of phosphors were studied. As a result, the Ba3Si6OI2N2:Eu^2+ samples sintered by microwave assisted sintering method have a higher phase purity and photo- luminescence intensity under ultraviolet excitation as compared with samples sintered in the conventional tube furnace The proposed method is a potential preparation method for the oxynitride phosphors with strong photoluminescence and high phase purity.
基金finacially supported by the National Natural Science Foundation of China (Nos. 11004154 and 10874160)the Scienceand Technology Foundation of Guangdong Province, China (No. 2007173)
文摘Sm3+-activated Ca2SiO4 red phosphors were prepared by the conventional high-temperature solid-state reaction method, and the effects of sodium (Na+) and samarium (Sm3+) ions doping concentrations on their crystal structure and luminescent properties were investigated by X-ray diffraction (XRD) and fluorescent spectrofluorometer. XRD patterns demonstrate that a well-crystalline structure forms in the phosphors when they are treated by calcination at 1200~C for 4 h, and the excitation spectra exhibit good absorption in the range between 350 and 420 nm. Under the irradiation of 405 nm near-ultraviolet (NUV) light, the spectra of the phosphors show a main emission peak at 601 nm attributed to the 4G5/2→6H7/2 transition of Sm3+ ions, and its intensity is greatly influenced by the concentrations of Sm3+ and Na2CO3. When the concentrations of Sm3+ ions and Na2CO3 are 2mol% and 6mol%, respectively, the optimal emission intensity can be obtained. From strong absorption in the near ultraviolet zone, the Na0.06Sm0.02Ca1.92SiO4 phosphor is a promising red-emitting phosphor for white light emitting diodes (W-LEDs).
文摘Citric acid complexing sol-gel auto-combustion method was explored to synthesize superfine Sr2CeO4 phosphors using the inorganic salts Sr(NO3)2 and Ce(NO3)3 as raw materials together with citric acid (CA) as a chelating agent. TGDTA, XRD, SEM and photoluminescence spectra were used to investigate the formation process, microstructure and luminescent properties of the synthesized Sr2CeO4. The results show that the crystallization of Sr2CeO4 begins at about 800 ℃ and completes around 900 ℃ with an orthorhombic structure. When the calcination temperature is above 1000 ℃, Sr2CeO4 partly decomposes into SrCeO3. SEM studies show that the particles of Sr2CeO4 obtained at 900 ℃ are sphericallike shape and superfine with diameter below 100 nm. The excitation spectrum of the superfine Sr2CeO4 phosphors displays a broad band with two peaks around 290 and 350 nm respectively. The former peak is stronger than the latter one. This broad band is due to the charge transfer (CT) band of the Ce^4+ ion. Excited by a radiation of 290 nm, the superfine phosphors emit a strong blue-white fluorescence, and the emission spectrum shows a broad band with a peak around 470 nm, which can be assigned to the f→t1g transition of Ce^4+ . It is found that the emission intensity is affected by the calcination temperature.
文摘Nano-sized SrAl2O4:Eu^2+,Dy^3+ phosphors with good monodispersity and narrow size distribution were synthesized by the coupling of water-in-oil (W/O) microemulsion with coprecipitation method. The phase composition, morphology, crystallinity, excitation spectra, emission spectra, and afterglow decay of SrAl2O4:Eu^2+,Dy^3+ nanophosphors were measured. It was found that the amount of surfactant that was used had an important effect on the shape and average size of the phosphor particles. SrAl204 phase of the phosphors showed an increase with the increase in calcination temperature. When the calcination temperature reached 1150℃, the fine crystal of SrAl2O4 was formed and the long afterglow luminescence could be obviously observed. In comparison with the samples prepared by the high-temperature solid-state method, the calcination temperature showed an obvious decrease and a dear blue shift occurred in the excitation and emission spectra of the sample. The afterglow time could be more than 8 h.
文摘YAl3 (BO3)4: Eu^3+ phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu^3+ phosphors with concentration of Eu^3+ ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength region. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu^3+ ions in YAl3(BO3)4: Eu^3+ phosphors was 8 mol%.
基金Project supported by the Key Research Project of Science and Technology of Shanxi, Shanxi Province, China (Grant No 2007031141)the Natural Science Foundation of Shanxi Province, China (Grant No 2007011061)the Scientific Research Foundation of the Higher Education Institutions of Shanxi Province, China (Grant No 20080012)
文摘A type of red luminescent Sr3Al2O6:Eu2+, Dy3+ phosphor powder is synthesised by sol-gel-combustion processing, with metal nitrates used as the source of metal ions and citric acid as a chelating agent of metal ions. By tracing the formation process of the sol-gel, it is found that it is necessary to reduce the amount of NO3 by dropping ethanol into the solution for forming a stable and homogeneous sol-gel. Thermogravimetric and Differential Scanning Calorimeter Analysis, x-ray diffractionmeter, scanning electron microscopy and photoluminescence spectroscopy are used to investigate the luminescent properties of the as-synthesised Sr3A1206:Eu2+, Dy3+. The results reveal that the Sr3Al2O6 crystallises completely when the combustion ash is sintered at 1250℃. The excitation and the emission spectra indicate that the excitation broadband lies mainly in a visible range and the phosphors emit a strong light at 618 nm under the excitation of 472 nm. The afterglow of (Sr0.94Eu0.03Dy0.03)3Al2O6 phosphors sintered at 1250℃ lasts for over 1000 s when the excited source is cut off.
基金supported by the Natural Science Foundation of Shandong Province(ZR2014JL029,BS2015CL012,ZR2015BM005)
文摘Er3+/Yb3+ co-doped Li3Ba2Gd3(MoO4)8 phosphors were synthesized by conven- tional solid state reaction method, and their structure and spectral properties were investigated. The diffuse reflectance spectra showed that the 4I15/2→4I11/2 transition of Er3+ and the 2F7/2→2F5/2 transition of Yb3+ ions were highly overlapped. Under the excitation of 980 nm, three up-conver- sion (UC) luminescence bands around 530, 555 and 660 nm were observed, corresponding to the 2H11/2→ 4I15/2, 4S3/2 → 4I15/2 and 4F9/2-→4I15/2 transitions of Er3+ ions, respectively. The effects of the concentration and pumping power on the UC intensities of Li3Ba2Gd3(MoO4)8:Er3+/yb3+ phosphors were investigated, and the possible UC mechanism was proposed based on the results.
基金This work was financially supported by the Chinese Academy of Sciences(CAS)Interdisciplinary Innovation Teamthe Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(No.19XNLG13).
文摘Nitrogen-rich Eu2+-doped Ca-α-SiAlON phosphors(Cam/2-xSi12-m-nAlm+nOnN16-n:xEu) were synthesized by a freeze-drying assisted combustion synthesis(CS) route. Fast-synthesized products with high purity and uniform particle morphology were confirmed by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The analysis of lattice parameters by comparison with empirical equations showed that the as-prepared phosphors had low oxygen content. A series of samples were prepared according to the stoichiometry of Cam/2-0.08Si12-mAlmN16:0.08 Eu for further research. The influences of m value on the luminescence properties were investigated in detail. As m increased, a redshift phenomenon was observed in both the excitation and emission spectra. First-principle electronic structure calculations showed that the 3d energy level of Ca played an important role in the occurrence of the redshift phenomenon.
文摘The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sm 3+ and Tm 3+ in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method under 1050 ℃ for 6 h have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be useful in finding some new long-lasting phosphors with different colors.
文摘The synthesis of BaMgAl10O17: Eu^2+ (BAM) phosphors using the sol-gel method and their luminescence properties were reported. The blue-light emitting BAM was synthesized using citric acid and ethylene glycol as chelating materials. Emission of blue-light was obtained from these phosphors. The luminescent intensity increases as the temperature of heat treatment is increased, This study investigated the effects of the molar ratio of ethylene glycol to citric acid (Ф value), with respect to the phase formation and luminescence properties of BAM. The variation of the Фvalue resulted in the change of the sol-gel reaction mechanism and the microstructures of the resultant powders. An increase in Фvalue leads to an increase in the rate of BAM phase formation. The photoluminescent intensity of the prepared phosphors increases with heating temperatures because of enhanced crystallization.
基金financially supported by the Natural Science Foundation Committee of Inner Mongolia (No.20080404MS0204)the "111 Talents Project" Foundation of Inner Mongolia,Chinathe Innovation Fund of Inner Mongolia University of Science and Technology (No.2010NC026)
文摘The CaLaGa3O7:Eu3+ phosphor was prepared by a chemical co-precipitation method. Field emission scanning electron microscopy (FE-SEM), laser particle size analysis, X-ray diffraction (XRD), photoluminescence (PL), and cathodoluminescence (CL) spectra were util- ized to characterize the synthesized phosphor. The results revealed that the phosphor was composed of microspheres with a slight agglomerate phenomenon and was spherically shaped. The average grain size was about 1.0 μm. Eu3+ ions, as luminescent centers, substituted La3+ ions into the single crystal lattice of CaLaGa307 with the sites of Cs. Although the CL spectrum was greatly different from the PL spectrum, it had the strongest red emission corresponding to the 5D0→7F2 transition of Eu3+. Under the excitation of UV light (287 nm) and electron beams (1.0-7.0 kV), the chromaticity coordinates of the phosphor were found to be in the nearly red and orange light regions, respec- tively.