This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op...This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.展开更多
Urban agriculture is gaining recognition for its potential contributions to environmental resilience and climate change adaptation,providing advantages such as urban greening,reduced heat island effects,and decreased ...Urban agriculture is gaining recognition for its potential contributions to environmental resilience and climate change adaptation,providing advantages such as urban greening,reduced heat island effects,and decreased air pollution.Moreover,it indirectly supports communities during weather events and natural disasters,ensuring food security and fostering community cohesion.However,concerns about planetary health risks persist in highly urbanized and climate-affected areas.Employing electronic databases such as Web of Science and PubMed and adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,we identified 55 relevant papers to comprehend the planetary health risks associated with urban agriculture,The literature review identified five distinct health risks related to urban agriculture:(1)trace metal risks in urban farms;(2)health risks associated with wastewater irrigation;(3)zoonotic risks;(4)other health risks;and(5)social and economic risks.The study highlights that urban agriculture,while emphasizing environmental benefits,particularly raises concerns about trace metal bioaccumulation in soil and vegetables,posing health risks for populations.Other well studied risks included wastewater irrigation and backyard livestock farming.The main limitations in the available literature were in studying infectious diseases and antibiotic resistance associated with urban agriculture.展开更多
Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representat...Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.展开更多
I analyze a new X-ray image of the youngest supernova remnant(SNR)in the Galaxy,which is the type Ia SNR G1.9+0.3,and reveal a very clear point-symmetrical structure.Since explosion models of type Ia supernovae(SNe Ia...I analyze a new X-ray image of the youngest supernova remnant(SNR)in the Galaxy,which is the type Ia SNR G1.9+0.3,and reveal a very clear point-symmetrical structure.Since explosion models of type Ia supernovae(SNe Ia)do not form such morphologies,the point-symmetrical morphology must come from the circumstellar material(CSM)into which the ejecta expands.The large-scale point-symmetry that I identify and the known substantial deceleration of the ejecta of SNR G1.9+0.3 suggest a relatively massive CSM of■1M⊙.I argue that the most likely explanation is the explosion of this SN Ia into a planetary nebula.The scenario that predicts a large fraction of SN Ia inside PNe(SNIPs)is the core degenerate scenario.Other SN Ia scenarios might lead to only a very small fraction of SNIPs or none at all.展开更多
The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form o...The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes.展开更多
The goal of this research is to explore the effects of black hole singularities. Methodology is to start with large objects like galaxies and continue to smaller objects within our solar neighbourhood. High-redshift o...The goal of this research is to explore the effects of black hole singularities. Methodology is to start with large objects like galaxies and continue to smaller objects within our solar neighbourhood. High-redshift observations from the James Webb Space Telescope reveal that distant galaxies and their central black holes formed shortly after the Big Bang. An innovation about the speed of light explains how supermassive black holes could have formed primordially. Predictions of Hawking radiation include the possibility of black holes contributing to the energy of stars such as the Sun. Black holes have also been suggested as a source of radiation and magnetic fields in giant planets. Observations of Enceladus raise the possibility that this moon and other objects near Saturn’s Rings contain small singularities. Extrapolations of this methodology indicate that black holes could exist within solar system bodies including planets. Extended discussion describes how their presence could explain mysteries of internal heat, planetary magnetic fields, and processes of solar system formation.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 3...The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 360/20, revolution speed of 300.9 r/min, powder-filling ratio of 10.88%, ball-filling ratio of 20.53%-23.88%, and grinding time of approximately 6 h. The discrete element method(DEM) was employed to analyze relationship between the noisy-power dissipation and the grinding efficiency, and equations describing the relationship were derived. The mean particle size of the ground powder decreased with a decrease in the degree of noisy-power dissipation, while the grinding efficiency and the amount of specific impact power used decreased with an increase in the degree of noisy-power dissipation.展开更多
Based on the transformed Eulerian-mean equations, the dynamics of planetary waves are discussed. Both observations and simulations indicate that in the Northern Hemisphere winter there are two waveguides for the merid...Based on the transformed Eulerian-mean equations, the dynamics of planetary waves are discussed. Both observations and simulations indicate that in the Northern Hemisphere winter there are two waveguides for the meridional propagation of quasi-stationary planetary waves. One is the high latitude waveguide, and the other is the low latitude waveguide. These results are in good agreement with theoretical analysis. Moreover, the convergence of EP flux indicates that the stratospheric sudden warming is the result of anomalous planetary wave propagation along the high latitude waveguide and its interaction with mean flows. The tropical quasi-biennial oscillation (QBO) winds, which represent one significant variation of zonal flow in the lower stratosphere at low latitudes, can influence the low latitude waveguide of planetary wave propagation. Our results of the wave-mean flow coupled model show that these tropical winds can also modulate the high latitude waveguide significantly in the case of wave-mean flow interaction.The transport effect of planetary waves on ozone is also analyzed. The residual mean circulation forced by planetary waves indicates that there is strong transport circulation for the dissipative planetary waves. Under the forcing of northward eddy heat transport, a positive transport circulation can result which rises at low latitudes and sinks at high latitudes. At the same time, the modification of planetary wave propagation by the equatorial QBO winds is shown to have an important impact on the transport circulation. The model results indicate that the meridional transport is amplified during the easterly phase of the QBO. This mechanism may explain the interannual variability of ozone in the stratosphere at high latitudes.展开更多
The discovery of a planetary companion to the intermediate-mass late-type giant star HD173416 from precise Doppler surveys of G and K giants at Xinglong station and Okayama Astrophysical Observatory (OAO) is present...The discovery of a planetary companion to the intermediate-mass late-type giant star HD173416 from precise Doppler surveys of G and K giants at Xinglong station and Okayama Astrophysical Observatory (OAO) is presented in this letter. The planet has a minimum mass of 2.7 MJ, an eccentricity of 0.21, a semimajor axis of 1.16 AU and an orbital period of 324 days.展开更多
We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling ra...We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling rate of the flow, du/dt = -u/τcool, where u and %ool are the internal energy and cooling timeseale, respectively. We assume the ratio of local'cooling to dynamical timescale, Ωτcool =β, to be a constant and also a function of the local temperature. We found that for the constantβ and γ = 5/3, fragmentation occurs only forβ ≤ 7. However, in the case ofβ having temperature dependence and γ = 5/3, fragmentation can also occur for larger values ofβ. By increasing the temperature dependence of the cooling timescale, the mass accretion rate decreases, the population of clumps/fragments increases, and the clumps/fragments can also form in the smaller radii. Moreover, we found that the clumps can form even in a low mass accretion rate, ≤10-7M⊙yr-1, in the case of temperature-dependentβ. However, clumps form with a larger mass accretion rate, 〉 10-7M⊙ yr-1, in the case of constantβ.展开更多
The subclass of bipolar Planetary Nebulae(PNe)exhibits well-defined low-power outflows and some shows shock-related equatorial spiderweb structures and hourglass structures surrounding these outflows.These structures ...The subclass of bipolar Planetary Nebulae(PNe)exhibits well-defined low-power outflows and some shows shock-related equatorial spiderweb structures and hourglass structures surrounding these outflows.These structures are distinctly different from the phenomena associated with spherical and elliptical PNe and suggest a non-standard way to simultaneously energise both kinds of structures.This paper presents evidence from the published literature on bipolar PN Hb 12 and other sources in support of an alternative scenario for energising these structures by means of accretion from material shells deposited during earlier post-AGB and pre-PNe evolutionary stages.In addition to energising the bipolar outflow,a sub-Eddington accretion scenario could hydrodynamically explain the spiderweb and outer hourglass structures as oblique shockwaves for guiding the accreting material into the equatorial region of the source.Estimates of the accretion rate resulting from fallback-related spherical accretion could indeed help to drive a low-power outflow and contribute to the total luminosity of these sources.展开更多
One of the key problems in the concept of planetary systems origin and early evolution is solid bodies formation in the protoplanetary gas-dust disc around young stars. Dust particles interactions inside the original ...One of the key problems in the concept of planetary systems origin and early evolution is solid bodies formation in the protoplanetary gas-dust disc around young stars. Dust particles interactions inside the original fluffy dust clusters of fractal nature resulted from gravitational instability and fragmentation in the disc’s central plane areassumed as the most plausible mechanism of primary bodies set up owing to particles integration within the clusters. Follow upcollisions are regarded to be responsible for eventual growth of primary bodies to the size of planetesimals. We discuss this scenario including chemical nature of particles depending on the disc’s radial temperature distribution and phase transitions. The mathematical model is developed based on the method of penetrating particles with the account for internal structure/properties of bodies involved, complicated patterns of their interaction, and phenomenological approach to describe energy distribution in the contact zone. The model is mainly addressed to the stage of formed solid bodies collisions. The results of numerical evaluation of the model are described involving some constraints for complete or partial destruction of colliding bodies followed by either scattering of collisional fragments orpartial back accumulation.展开更多
Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random error...Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.展开更多
During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus...During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus, the selection of a sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature selection technique(IHFST) that combines a distance evaluation technique(DET), Pearson’s correlation analysis, and an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected according to the distance evaluation criterion of DET, and the Pearson’s correlation analysis and ad hoc technique are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence,a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the proposed method was validated through several experiments carried out on a planetary gearbox with incipient cracks seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification performance than other methods. This study proposes a sensitive feature subset selection method that achieves an obvious improvement in terms of the accuracy of the fault classification.展开更多
In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical syst...In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.展开更多
Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb...Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb wave activity fluxes.The planetary wave propagation can clearly be seen in the longitude-height and latitude-height sections of the Plumb wave activity flux and EP flux,respectively,when the stratospheric basic state is partially reflective.Primarily,a wave packet emanating from Baffin Island/coast of Labrador propagated eastward,equatorward and was reflected over Central Eurasia and parts of China,which in turn triggered the advection of cold wind from the northern part of the boreal forest regions and Siberia to the subtropics.The wide region of Central Eurasia and China experienced extreme cold weather during the second ten days of January 2008,whereas the extraordinary persistence of the event might have occurred due to an anomalous blocking high in the Urals-Siberia region.展开更多
Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetar...Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.展开更多
It has been challenging to design seedling pick-up mechanism based on given key points and trajectories,because it involves dimensional synthesis and rod length optimization.In this paper,the dimensional synthesis of ...It has been challenging to design seedling pick-up mechanism based on given key points and trajectories,because it involves dimensional synthesis and rod length optimization.In this paper,the dimensional synthesis of seedling pickup mechanism with planetary gear train was studied based on the data of given key points and the trajectory of the endpoint of seedling pick-up mechanism.Given the positions and orientations requirements of the five key points,the study first conducted a dimensional synthesis of the linkage size and center of rotation.The next steps were to select a reasonable solution and optimize the data values based on the ideal seedling trajectory.The link motion was driven by the planetary gear train of the two-stage gear.Four pitch curves of noncircular gears were obtained by calculating and distributing the transmission ratio according to the data.For the pitch curve with two convex points,the tooth profile design method of incomplete noncircular gear was applied.The seedling pick-up mechanism was tested by a virtual prototype and a physical prototype designed with the obtained parameter values.The results were consistent with the theoretical design requirements,confirming that the mechanism meets the expected requirements for picking seedlings up.This paper presents a new design method of vegetable pot seedling pick-up mechanism for an automatic vegetable transplanter.展开更多
Planetary gear set is the critical component in helicopter transmission train, and an important problem in condition monitoring and health management of planetary gear set is quantitative damage detection. In order to...Planetary gear set is the critical component in helicopter transmission train, and an important problem in condition monitoring and health management of planetary gear set is quantitative damage detection. In order to resolve this problem, an approach based on physical models is presented to detect damage quantitatively in planetary gear set. A particular emphasis is put on a feature generation and selection method, which is used for sun gear tooth breakage damage detection quantitatively in planetary gear box of helicopter transmission system. In this feature generation procedure, the pure torsional dynamical models of 2K-H planetary gear set is established for healthy case and sun gear tooth-breakage case. Then, a feature based on the spectrum of simulation signals of the dynamical models is generated. Aiming at selecting the best feature suitable for quantitative damage detection, a two-sample Z-test procedure is used to analyze the performance of features on damage evolution tracing. A feature named SR, which had better performance in tracking damage, is proposed to detect damage in planetary gear set. Meanwhile, the sun gear tooth-chipped seeded experiments with different severity are designed to validate the method above, and then the test vibration signal is picked up and used for damage detection. With the results of several experiments for quantitative damage detection, the feasibility and the effect of this approach are verified. The proposed method can supply an effective tool for degradation state identification in condition monitoring and health management of helicopter transmission system.展开更多
基金supported by the Serbian Ministry of Education and Science under Grant No.TR35006 and COST Action:CA23155—A Pan-European Network of Ocean Tribology(OTC)The research of B.Rosic and M.Rosic was supported by the Serbian Ministry of Education and Science under Grant TR35029.
文摘This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain.
文摘Urban agriculture is gaining recognition for its potential contributions to environmental resilience and climate change adaptation,providing advantages such as urban greening,reduced heat island effects,and decreased air pollution.Moreover,it indirectly supports communities during weather events and natural disasters,ensuring food security and fostering community cohesion.However,concerns about planetary health risks persist in highly urbanized and climate-affected areas.Employing electronic databases such as Web of Science and PubMed and adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines,we identified 55 relevant papers to comprehend the planetary health risks associated with urban agriculture,The literature review identified five distinct health risks related to urban agriculture:(1)trace metal risks in urban farms;(2)health risks associated with wastewater irrigation;(3)zoonotic risks;(4)other health risks;and(5)social and economic risks.The study highlights that urban agriculture,while emphasizing environmental benefits,particularly raises concerns about trace metal bioaccumulation in soil and vegetables,posing health risks for populations.Other well studied risks included wastewater irrigation and backyard livestock farming.The main limitations in the available literature were in studying infectious diseases and antibiotic resistance associated with urban agriculture.
基金supported by China Postdoctoral Science Foundation(No.2023TQ0247)Shenzhen Science and Technology Program(No.JCYJ20220530140602005)+2 种基金the Fundamental Research Funds for the Central Universities(No.2042023kfyq03)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515111071)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(No.GZB20230544).
文摘Knowledge of the mechanical behavior of planetary rocks is indispensable for space explorations.The scarcity of pristine samples and the irregular shapes of planetary meteorites make it difficult to obtain representative samples for conventional macroscale rock mechanics experiments(macro-RMEs).This critical review discusses recent advances in microscale RMEs(micro-RMEs)techniques and the upscaling methods for extracting mechanical parameters.Methods of mineralogical and microstructural analyses,along with non-destructive mechanical techniques,have provided new opportunities for studying planetary rocks with unprecedented precision and capabilities.First,we summarize several mainstream methods for obtaining the mineralogy and microstructure of planetary rocks.Then,nondestructive micromechanical testing methods,nanoindentation and atomic force microscopy(AFM),are detailed reviewed,illustrating the principles,advantages,influencing factors,and available testing results from literature.Subsequently,several feasible upscaling methods that bridge the micro-measurements of meteorite pieces to the strength of the intact body are introduced.Finally,the potential applications of planetary rock mechanics research to guiding the design and execution of space missions are environed,ranging from sample return missions and planetary defense to extraterrestrial construction.These discussions are expected to broaden the understanding of the microscale mechanical properties of planetary rocks and their significant role in deep space exploration.
基金supported by a grant from the Israel Science Foundation(769/20)。
文摘I analyze a new X-ray image of the youngest supernova remnant(SNR)in the Galaxy,which is the type Ia SNR G1.9+0.3,and reveal a very clear point-symmetrical structure.Since explosion models of type Ia supernovae(SNe Ia)do not form such morphologies,the point-symmetrical morphology must come from the circumstellar material(CSM)into which the ejecta expands.The large-scale point-symmetry that I identify and the known substantial deceleration of the ejecta of SNR G1.9+0.3 suggest a relatively massive CSM of■1M⊙.I argue that the most likely explanation is the explosion of this SN Ia into a planetary nebula.The scenario that predicts a large fraction of SN Ia inside PNe(SNIPs)is the core degenerate scenario.Other SN Ia scenarios might lead to only a very small fraction of SNIPs or none at all.
文摘The fluctuating planetary gravitational field influences not only activities on the Sun but also on the Earth. A special correlation function describes the harmonics of these fluctuations. Groups of earthquakes form oscillation patterns that differ significantly from randomly chosen control groups. These patterns are suitable as an element of an AI for the probability of earthquakes.
文摘The goal of this research is to explore the effects of black hole singularities. Methodology is to start with large objects like galaxies and continue to smaller objects within our solar neighbourhood. High-redshift observations from the James Webb Space Telescope reveal that distant galaxies and their central black holes formed shortly after the Big Bang. An innovation about the speed of light explains how supermassive black holes could have formed primordially. Predictions of Hawking radiation include the possibility of black holes contributing to the energy of stars such as the Sun. Black holes have also been suggested as a source of radiation and magnetic fields in giant planets. Observations of Enceladus raise the possibility that this moon and other objects near Saturn’s Rings contain small singularities. Extrapolations of this methodology indicate that black holes could exist within solar system bodies including planets. Extended discussion describes how their presence could explain mysteries of internal heat, planetary magnetic fields, and processes of solar system formation.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金supported by the Inert Anode Material Production and Application in Electrolytic Production of Aluminium program of the Yunnan Aluminium Yonxin Aluminium Co. Ltd
文摘The relationship between the efficiency of NiO/Fe2O3 wet grinding and noisy-power dissipation was studied. The optimal grinding parameters were found as: a slurry water content of 64.10%-85.47%, ball number ratio of 360/20, revolution speed of 300.9 r/min, powder-filling ratio of 10.88%, ball-filling ratio of 20.53%-23.88%, and grinding time of approximately 6 h. The discrete element method(DEM) was employed to analyze relationship between the noisy-power dissipation and the grinding efficiency, and equations describing the relationship were derived. The mean particle size of the ground powder decreased with a decrease in the degree of noisy-power dissipation, while the grinding efficiency and the amount of specific impact power used decreased with an increase in the degree of noisy-power dissipation.
基金This study was supported by the National Key Programme for Developing Basic Sciences under Grant G1998040900 and by the Chinese Academy of Sciences under Grant KZCX1-10-07.
文摘Based on the transformed Eulerian-mean equations, the dynamics of planetary waves are discussed. Both observations and simulations indicate that in the Northern Hemisphere winter there are two waveguides for the meridional propagation of quasi-stationary planetary waves. One is the high latitude waveguide, and the other is the low latitude waveguide. These results are in good agreement with theoretical analysis. Moreover, the convergence of EP flux indicates that the stratospheric sudden warming is the result of anomalous planetary wave propagation along the high latitude waveguide and its interaction with mean flows. The tropical quasi-biennial oscillation (QBO) winds, which represent one significant variation of zonal flow in the lower stratosphere at low latitudes, can influence the low latitude waveguide of planetary wave propagation. Our results of the wave-mean flow coupled model show that these tropical winds can also modulate the high latitude waveguide significantly in the case of wave-mean flow interaction.The transport effect of planetary waves on ozone is also analyzed. The residual mean circulation forced by planetary waves indicates that there is strong transport circulation for the dissipative planetary waves. Under the forcing of northward eddy heat transport, a positive transport circulation can result which rises at low latitudes and sinks at high latitudes. At the same time, the modification of planetary wave propagation by the equatorial QBO winds is shown to have an important impact on the transport circulation. The model results indicate that the meridional transport is amplified during the easterly phase of the QBO. This mechanism may explain the interannual variability of ozone in the stratosphere at high latitudes.
基金funded by the NSFC under grants 10803010 and 10521001Grants-in-Aid for Scientific Research (B) No.17340056 (H.A.)the Joint program on Search for Extra-solar planets between China and Japan (2008–2010) from the Japan Society for the Promotion of Science.
文摘The discovery of a planetary companion to the intermediate-mass late-type giant star HD173416 from precise Doppler surveys of G and K giants at Xinglong station and Okayama Astrophysical Observatory (OAO) is presented in this letter. The planet has a minimum mass of 2.7 MJ, an eccentricity of 0.21, a semimajor axis of 1.16 AU and an orbital period of 324 days.
文摘We investigate the effects of the cooling function in the formation of clumps of protoplanetary disks using two-dimensional smoothed particle hydrody- namic simulations. We use a simple prescription for the cooling rate of the flow, du/dt = -u/τcool, where u and %ool are the internal energy and cooling timeseale, respectively. We assume the ratio of local'cooling to dynamical timescale, Ωτcool =β, to be a constant and also a function of the local temperature. We found that for the constantβ and γ = 5/3, fragmentation occurs only forβ ≤ 7. However, in the case ofβ having temperature dependence and γ = 5/3, fragmentation can also occur for larger values ofβ. By increasing the temperature dependence of the cooling timescale, the mass accretion rate decreases, the population of clumps/fragments increases, and the clumps/fragments can also form in the smaller radii. Moreover, we found that the clumps can form even in a low mass accretion rate, ≤10-7M⊙yr-1, in the case of temperature-dependentβ. However, clumps form with a larger mass accretion rate, 〉 10-7M⊙ yr-1, in the case of constantβ.
基金the JSPS KAKENHI program(JP16H02167)support from the ARC Discovery project DP180101061 of the Australian Government+1 种基金the CAS LCWR Program(2018-XBQNXZB-021)of Chinathe Japanese MEXT scholarship,the Leids Kerkhoven-Bosscha Fonds(LKBF17.0.002)。
文摘The subclass of bipolar Planetary Nebulae(PNe)exhibits well-defined low-power outflows and some shows shock-related equatorial spiderweb structures and hourglass structures surrounding these outflows.These structures are distinctly different from the phenomena associated with spherical and elliptical PNe and suggest a non-standard way to simultaneously energise both kinds of structures.This paper presents evidence from the published literature on bipolar PN Hb 12 and other sources in support of an alternative scenario for energising these structures by means of accretion from material shells deposited during earlier post-AGB and pre-PNe evolutionary stages.In addition to energising the bipolar outflow,a sub-Eddington accretion scenario could hydrodynamically explain the spiderweb and outer hourglass structures as oblique shockwaves for guiding the accreting material into the equatorial region of the source.Estimates of the accretion rate resulting from fallback-related spherical accretion could indeed help to drive a low-power outflow and contribute to the total luminosity of these sources.
文摘One of the key problems in the concept of planetary systems origin and early evolution is solid bodies formation in the protoplanetary gas-dust disc around young stars. Dust particles interactions inside the original fluffy dust clusters of fractal nature resulted from gravitational instability and fragmentation in the disc’s central plane areassumed as the most plausible mechanism of primary bodies set up owing to particles integration within the clusters. Follow upcollisions are regarded to be responsible for eventual growth of primary bodies to the size of planetesimals. We discuss this scenario including chemical nature of particles depending on the disc’s radial temperature distribution and phase transitions. The mathematical model is developed based on the method of penetrating particles with the account for internal structure/properties of bodies involved, complicated patterns of their interaction, and phenomenological approach to describe energy distribution in the contact zone. The model is mainly addressed to the stage of formed solid bodies collisions. The results of numerical evaluation of the model are described involving some constraints for complete or partial destruction of colliding bodies followed by either scattering of collisional fragments orpartial back accumulation.
基金Supported by National Natural Science Foundation of China(Grant No.51375013)Anhui Provincial Natural Science Foundation of China(Grant No.1208085ME64)
文摘Tooth modification technique is widely used in gear industry to improve the meshing performance of gearings. However, few of the present studies on tooth modification considers the influence of inevitable random errors on gear modification effects. In order to investigate the uncertainties of tooth modification amount variations on system's dynamic behaviors of a helical planetary gears, an analytical dynamic model including tooth modification parameters is proposed to carry out a deterministic analysis on the dynamics of a helical planetary gear. The dynamic meshing forces as well as the dynamic transmission errors of the sun-planet 1 gear pair with and without tooth modifications are computed and compared to show the effectiveness of tooth modifications on gear dynamics enhancement. By using response surface method, a fitted regression model for the dynamic transmission error(DTE) fluctuations is established to quantify the relationship between modification amounts and DTE fluctuations. By shifting the inevitable random errors arousing from manufacturing and installing process to tooth modification amount variations, a statistical tooth modification model is developed and a methodology combining Monte Carlo simulation and response surface method is presented for uncertainty analysis of tooth modifications. The uncertainly analysis reveals that the system's dynamic behaviors do not obey the normal distribution rule even though the design variables are normally distributed. In addition, a deterministic modification amount will not definitely achieve an optimal result for both static and dynamic transmission error fluctuation reduction simultaneously.
基金Supported by National Natural Science Foundation of China(Grant No.51475053)
文摘During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus, the selection of a sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature selection technique(IHFST) that combines a distance evaluation technique(DET), Pearson’s correlation analysis, and an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected according to the distance evaluation criterion of DET, and the Pearson’s correlation analysis and ad hoc technique are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence,a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the proposed method was validated through several experiments carried out on a planetary gearbox with incipient cracks seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification performance than other methods. This study proposes a sensitive feature subset selection method that achieves an obvious improvement in terms of the accuracy of the fault classification.
基金Supported by the Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology
文摘In order to satisfy the increasing demand on high performance planetary transmissions, an important line of research is focused on the understanding of some of the underlying phenomena involved in this mechanical system. Through the development of models capable of reproduce the system behavior, research in this area contributes to improve gear transmission insight, helping developing better maintenance practices and more efficient design processes. A planetary gear model used for the design of profile modifications ratio based on the levelling of the load sharing ratio is presented. The gear profile geometry definition, following a vectorial approach that mimics the real cutting process of gears, is thoroughly described. Teeth undercutting and hypotrochoid definition are implicitly considered, and a procedure for the incorporation of a rounding arc at the tooth tip in order to deal with corner contacts is described. A procedure for the modeling of profile deviations is presented, which can be used for the introduction of both manufacturing errors and designed profile modifications. An easy and flexible implementation of the profile deviation within the planetary model is accomplished based on the geometric overlapping. The contact force calculation and dynamic implementation used in the model are also introduced, and parameters from a real transmission for agricultural applications are presented for the application example. A set of reliefs is designed based on the levelling of the load sharing ratio for the example transmission, and finally some other important dynamic factors of the transmission are analyzed to assess the changes in the dynamic behavior with respect to the non-modified case. Thus, the main innovative aspect of the proposed planetary transmission model is the capacity of providing a simulated load sharing ratio which serves as design variable for the calculation of the tooth profile modifications.
基金supported jointly by the National Basic Research Program of China (Grant No. 2010CB 428603)the National Natural Science Foundation of China (Grants Nos. 41250110073, 41350110331 and 41025017)+1 种基金the Chinese Academy of Sciences fellowship for young international scientists (Grant No. 2011Y2ZZB05)a China postdoctoral science foundation grant (Grant No. 2013M541010)
文摘Reflection of stratospheric planetary waves and its impact on tropospheric cold weather over Asia during January 2008 were investigated by applying two dimensional Eliassen-Palm (EP) flux and three-dimensional Plumb wave activity fluxes.The planetary wave propagation can clearly be seen in the longitude-height and latitude-height sections of the Plumb wave activity flux and EP flux,respectively,when the stratospheric basic state is partially reflective.Primarily,a wave packet emanating from Baffin Island/coast of Labrador propagated eastward,equatorward and was reflected over Central Eurasia and parts of China,which in turn triggered the advection of cold wind from the northern part of the boreal forest regions and Siberia to the subtropics.The wide region of Central Eurasia and China experienced extreme cold weather during the second ten days of January 2008,whereas the extraordinary persistence of the event might have occurred due to an anomalous blocking high in the Urals-Siberia region.
基金supported by the National Natural Science Foundation of China (Grant No. 91544231)the State Key Research and Development Program of China (Grant No. 2016YFC0200500)+1 种基金Jiangsu Provincial Collaborative Innovation Center of Climate ChangeJun ZOU was also supported by the Program for Outstanding Ph D Candidates of Nanjing University
文摘Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 W m-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.
基金National Key Research and Development Program of China(Grant No.2017YFD0700800)National Science Foundation of China(Grant Nos.51775512,51575496)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ16E050003).
文摘It has been challenging to design seedling pick-up mechanism based on given key points and trajectories,because it involves dimensional synthesis and rod length optimization.In this paper,the dimensional synthesis of seedling pickup mechanism with planetary gear train was studied based on the data of given key points and the trajectory of the endpoint of seedling pick-up mechanism.Given the positions and orientations requirements of the five key points,the study first conducted a dimensional synthesis of the linkage size and center of rotation.The next steps were to select a reasonable solution and optimize the data values based on the ideal seedling trajectory.The link motion was driven by the planetary gear train of the two-stage gear.Four pitch curves of noncircular gears were obtained by calculating and distributing the transmission ratio according to the data.For the pitch curve with two convex points,the tooth profile design method of incomplete noncircular gear was applied.The seedling pick-up mechanism was tested by a virtual prototype and a physical prototype designed with the obtained parameter values.The results were consistent with the theoretical design requirements,confirming that the mechanism meets the expected requirements for picking seedlings up.This paper presents a new design method of vegetable pot seedling pick-up mechanism for an automatic vegetable transplanter.
基金supported by National Natural Science Foundation of China (Grant No. 50905183)
文摘Planetary gear set is the critical component in helicopter transmission train, and an important problem in condition monitoring and health management of planetary gear set is quantitative damage detection. In order to resolve this problem, an approach based on physical models is presented to detect damage quantitatively in planetary gear set. A particular emphasis is put on a feature generation and selection method, which is used for sun gear tooth breakage damage detection quantitatively in planetary gear box of helicopter transmission system. In this feature generation procedure, the pure torsional dynamical models of 2K-H planetary gear set is established for healthy case and sun gear tooth-breakage case. Then, a feature based on the spectrum of simulation signals of the dynamical models is generated. Aiming at selecting the best feature suitable for quantitative damage detection, a two-sample Z-test procedure is used to analyze the performance of features on damage evolution tracing. A feature named SR, which had better performance in tracking damage, is proposed to detect damage in planetary gear set. Meanwhile, the sun gear tooth-chipped seeded experiments with different severity are designed to validate the method above, and then the test vibration signal is picked up and used for damage detection. With the results of several experiments for quantitative damage detection, the feasibility and the effect of this approach are verified. The proposed method can supply an effective tool for degradation state identification in condition monitoring and health management of helicopter transmission system.