期刊文献+
共找到4,532篇文章
< 1 2 227 >
每页显示 20 50 100
A historical overview of nano-optics:From near-field optics to plasmonics
1
作者 邓妙怡 朱星 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期134-145,共12页
Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to o... Nano-optics is an emergent research field in physics that appeared in the 1980s,which deals with light–matter optical interactions at the nanometer scale.In early studies of nano-optics,the main concern focus is to obtain higher optical resolution over the diffraction limit.The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy(SNOM)are developed.The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons.In the sense of resolution and wider application,there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development.Nowadays,studies of nano-optics prefer the investigation of plasmonics in different material systems.In this article,the history of the development of near-field optics is briefly reviewed.The difficulties of conventional SNOM to achieve higher resolution are discussed.As an alternative solution,surface plasmons have shown the advantages of higher resolution,wider application,and flexible nano-optical modulation for new devices.The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed.In this way,the evolution progress from near-field optics to plasmonics of nano-optics research is presented.The future development of nano-optics is discussed then. 展开更多
关键词 NANO-OPTICS near-field optics surface plasmon plasmonic modulation
下载PDF
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers 被引量:2
2
作者 Andergachew Mekonnen Berhe Khalil As’ham +2 位作者 Ibrahim Al-Ani Haroldo T.Hattori Andrey E.Miroshnichenko 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第5期20-32,共13页
Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo... Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature. 展开更多
关键词 catenary-shaped field enhancement strong coupling plasmon EXCITON Rabi splitting
下载PDF
Tunable artificial plasmonic nanolaser with wide spectrum emission operating at room temperature
3
作者 周鹏 郭佳琦 +7 位作者 梁琨 金磊 梁熊玉 李俊强 邓绪彦 秦建宇 张家森 于丽 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期466-471,共6页
With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are... With the rapid development of information and communication technology,a key objective in the field of optoelectronic integrated devices is to reduce the nano-laser size and energy consumption.Photonics nanolasers are unable to exceed the diffraction limit and typically exhibit low modulation rates of several GHz.In contrast,plasmonic nanolaser utilizes highly confined surface plasmon polariton(SPP)mode that can exceed diffraction limit and their strong Purcell effect can accelerate the modulation rates to several THz.Herein,we propose a parametrically tunable artificial plasmonic nanolasers based on metal–insulator–semiconductor–insulator–metal(MISIM)structure,which demonstrates its ability to compress the mode field volume toλ/14.As the pump power increases,the proposed artificial plasmonic nanolaser exhibits 20-nm-wide output spectrum.Additionally,we investigate the effects of various cavity parameters on the nanolaser’s output threshold,offering potentials for realizing low-threshold artificial plasmonic nanolasers.Moreover,we observe a blue shift in the center wavelength of the nanolaser output with thinner gain layer thickness,predominantly attributed to the increased exciton–photon coupling strength.Our work brings inspiration to several areas,including spaser-based interconnects,nano-LEDs,spontaneous emission control,miniaturization of photon condensates,eigenmode engineering of plasmonic nanolasers,and optimal design driven by artificial intelligence(AI). 展开更多
关键词 surface plasmon polaritons nanolaser ULTRAFAST MISIM
下载PDF
Nitrogen-doped microporous graphite-enhanced copper plasmonic effect for solar evaporation
4
作者 Xintao Wu Chengcheng Li +7 位作者 Ziqi Zhang Yang Cao Jieqiong Wang Xinlong Tian Zhongxin Liu Yijun Shen Mingxin Zhang Wei Huang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期215-223,共9页
Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Imp... Water scarcity is a global challenge,and solar evaporation technology offers a promising and eco-friendly solution for freshwater production.Photothermal conversion materials(PCMs)are crucial for solar evaporation.Improving photothermal conversion efficiency and reducing water evaporation enthalpy are the two key strategies for the designing of PCMs.The desired PCMs that combine both of these properties remain a challenging task,even with the latest advancements in the field.Herein,we developed copper nanoparticles(NPs)with different conjugated nitrogen-doped microporous carbon coatings(Cu@C–N)as PCMs.The microporous carbon enveloping layer provides a highly efficient pathway for water transport and a nanoconfined environment that protects Cu NPs and facilitates the evaporation of water clusters,reducing the enthalpy of water evaporation.Meanwhile,the conjugated nitrogen nodes form strong metal-organic coordination bonds with the surface of copper NPs,acting as an energy bridge to achieve rapid energy transfer and provide high solar-to-vapor conversion efficiency.The Cu@C–N exhibited up to 89.4%solar-to-vapor conversion efficiency and an evaporation rate of 1.94 kgm^(−2) h^(−1) under one sun irradiation,outperforming conventional PCMs,including carbon-based materials and semiconductor materials.These findings offer an efficient design scheme for high-performance PCMs essential for solar evaporators to address global water scarcity. 展开更多
关键词 NANOCONFINEMENT photothermal conversion materials plasmonic resonance seawater desalination solar evaporation
下载PDF
Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
5
作者 Sören im Sande Yadong Deng +1 位作者 Sergey I.Bozhevolnyi Fei Ding 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第8期16-24,共9页
Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of hig... Optical metasurfaces,comprising subwavelength quasi-planar nanostructures,constitute a universal platform for manipulating the amplitude,phase,and polarization of light,thus paving a way for the next generation of highly integrated multifunctional optical devices.In this work,we introduce a reflective metasurface for the generation of a complete(angularly resolved)polarization set by randomly interleaving anisotropic plasmonic meta-atoms acting as nanoscale wave plates.In the proof-of-concept demonstration,we achieve multidirectional beam-steering into different polarization channels forming a complete set of polarization states,which can also be dynamically altered by switching the spin of incident light.The developed design concept represents a significant advancement in achieving flat polarization optics with advanced functionalities. 展开更多
关键词 plasmonic metasurface randomly interleaved multidirectional beam-steering spin-controlled all-polarization generation
下载PDF
Plasmon Induced Heat Funneling from Au to Cu in the Bimetallic Au@Cu Core-Shell Nanoparticles
6
作者 Danli Shi Jingyi Yang +5 位作者 Minjie Li Jianchang Lv Xi Liu Ao Liu Shaoshi Guo Yan Wan 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期522-530,I0061-I0066,I0094,共16页
The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot elec... The bimetallic nanostructures that mix a plasmonic metal with a transition metal in the form of the core-shell nanoparticles are promising to promote catalytic performance.But it is still unclear how the heat(hot electrons and phonons)transfers on the interface between two metals.We have designed and synthesized Au@Cu bimetallic nanoparticles with Au as core and Cu as shell.By using transient absorption spectroscopy,we find that there are two plasmon induced heat funneling processes from Au core to Cu shell.One is the electron temperature equilibrium(electron heat transfer)with equilibration time of~560 fs.The other is the lattice temperature equilibrium(lattice heat transfer)with equilibration time of~13 ps.This plasmon induced heat funneling may be universal in similar bimetallic nanostructures,so our finding could contribute to further understanding the catalytic mechanism of bimetallic plasmonic photothermal catalysis. 展开更多
关键词 plasmon Transient absorption Bimetallic nanoparticle
下载PDF
Microscopic mechanism of plasmon-mediated photocatalytic H_(2) splitting on Ag-Au alloy chain
7
作者 宋玉慧 芦一瑞 +5 位作者 郭阿鑫 曹逸飞 李金萍 付正坤 严蕾 张正龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期322-326,共5页
Alloy nanostructures supporting localized surface plasmon resonances has been widely used as efficient photocatalysts,but the microscopic mechanism of alloy compositions enhancing the catalytic efficiency is still unc... Alloy nanostructures supporting localized surface plasmon resonances has been widely used as efficient photocatalysts,but the microscopic mechanism of alloy compositions enhancing the catalytic efficiency is still unclear.By using time-dependent density functional theory(TDDFT),we analyze the real-time reaction processes of plasmon-mediated H_(2) splitting on linear Ag-Au alloy chains when exposed to femtosecond laser pulses.It is found that H_(2) splitting rate depends on the position and proportion of Au atoms in alloy chains,which indicates that specially designed Ag-Au alloy is more likely to induce the reaction than pure Ag chain.Especially,more electrons directly transfer from the alloy chain to the anti-bonding state of H_(2),thereby accelerating the H_(2) splitting reaction.These results establish a theoretical foundation for comprehending the microscopic mechanism of plasmon-induced chemical reaction on the alloy nanostructures. 展开更多
关键词 plasmon PHOTOCATALYSIS time-dependent density functional theory(TDDFT)
下载PDF
Advances in surface plasmon resonance for analyzing active components in traditional Chinese medicine
8
作者 Jing Xie Xian-Deng Li +4 位作者 Mi Li Hong-Yan Zhu Yan Cao Jian Zhang A-Jing Xu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第10期1397-1406,共10页
The surface plasmon resonance(SPR)biosensor technology is a novel optical analysis method for studying intermolecular interactions.Owing to in-depth research on traditional Chinese medicine(TCM)in recent years,compreh... The surface plasmon resonance(SPR)biosensor technology is a novel optical analysis method for studying intermolecular interactions.Owing to in-depth research on traditional Chinese medicine(TCM)in recent years,comprehensive and specific identification of components and target interactions has become key yet difficult tasks.SPR has gradually been used to analyze the active components of TCM owing to its high sensitivity,strong exclusivity,large flux,and real-time monitoring capabilities.This review sought to briefly introduce the active components of TCM and the principle of SPR,and provide historical and new insights into the application of SPR in the analysis of the active components of TCM. 展开更多
关键词 Surface plasmon resonance Traditional Chinese medicine Optical analysis techniques Multi-target molecular mechanism study BIOSENSOR
下载PDF
Plasmon-induced nonlinear response on gold nanoclusters
9
作者 宋玉慧 曹逸飞 +5 位作者 黄思晨 李凯超 杜如海 严蕾 付正坤 张正龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期36-39,共4页
The plasmon-induced nonlinear response has attracted great attention in micro-nano optics and optoelectronics applications,yet the underlying microscopic mechanism remains elusive.In this study,the nonlinear response ... The plasmon-induced nonlinear response has attracted great attention in micro-nano optics and optoelectronics applications,yet the underlying microscopic mechanism remains elusive.In this study,the nonlinear response of gold nanoclusters when exposed to a femtosecond laser pulse was investigated using time-dependent density functional theory.It was observed that the third-order tunneling current was augmented in plasmonic dimers,owing to a greater number of electrons in the dimer being excited from occupied to unoccupied states.These findings provide profound theoretical insights and enable the realization of accurate regulation and control of nonlinear effects induced by plasmons at the atomic level. 展开更多
关键词 plasmon nonlinear optics time-dependent density functional theory(TDDFT)
下载PDF
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
10
作者 Weihan Li Jia Chen +6 位作者 Shizhao Gao Lingyun Niu Jiaxuan Wei Ruosong Sun Yaqi Wei Wenxuan Tang Tie Jun Cui 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第9期5-20,共16页
Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing ... Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems. 展开更多
关键词 smart antenna external perception spoof surface plasmon polaritons computer vision aids
下载PDF
Photocatalytic seawater splitting by 2D heterostructure of ZnIn_(2)S_(4)/WO_(3) decorated with plasmonic Au for hydrogen evolution under visible light
11
作者 Huiqin An Yanjun Wang +9 位作者 Xing Xiao Jiaxin Liu Zhiyao Ma Tianxin Gao Wanyu Hong Lizhi Zhao Hong Wang Qingjun Zhu Shanshan Chen Zhen Yin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期55-63,I0003,共10页
Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.How... Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting. 展开更多
关键词 Photocatalytic seawater splitting 2D/2D ZnIn_(2)S_(4)/WO_(3) Surface plasmon resonance effect Interfacial electric field
下载PDF
Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis
12
作者 Bibhu Prasad Nanda Priyanka Rani +3 位作者 Priyanka Paul Aman Subrahmanya S.Ganti Rohit Bhatia 《Journal of Pharmaceutical Analysis》 CSCD 2024年第11期1603-1624,共22页
An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes.Localized surface plasmon resonance(LSPR)is a phenomenon in the realm of nanophotonics ... An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes.Localized surface plasmon resonance(LSPR)is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles(NPs)or nanostructures interact with incident light.Conversely,surface-enhanced Raman spectroscopy(SERS)is an influential analytical technique based on Raman scattering,wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.A detailed exploration of the recent groundbreaking developments in optical biosensors employing LSPR and SERS technologies has been thoroughly discussed along with their underlying principles and the working mechanisms.A biosensor chip has been created,featuring a high-density deposition of gold nanoparticles(AuNPs)under varying ligand concentration and reaction duration on the substrate.An ordinary description,along with a visual illustration,has been thoroughly provided for concepts such as a sensogram,refractive index shift,surface plasmon resonance(SPR),and the evanescent field,Rayleigh scattering,Raman scattering,as well as the electromagnetic enhancement and chemical enhancement.LSPR and SERS both have advantages and disadvantages,but widely used SERS has some advantages over LSPR,like chemical specificity,high sensitivity,multiplexing,and versatility in different fields.This review confirms and elucidates the significance of different disease biomarker identification.LSPR and SERS both play a vital role in the detection of various types of cancer,such as cervical cancer,ovarian cancer,endometrial cancer,prostate cancer,colorectal cancer,and brain tumors.This proposed optical biosensor offers potential applications for early diagnosis and monitoring of viral disease,bacterial infectious diseases,fungal diseases,diabetes,and cardiac disease biosensing.LSPR and SERS provide a new direction for environmental monitoring,food safety,refining impurities from water samples,and lead detection.The understanding of these biosensors is still limited and challenging. 展开更多
关键词 Localized surface plasmon resonance Surface-enhanced Raman spectroscopy Nanophotonic Biosensors Nanoparticles BIOMARKER Cancer
下载PDF
Reconfigurable exceptional point-based sensing with 0.001λsensitivity using spoof localized surface plasmons
13
作者 Yaoran Zhang Hao Hu +4 位作者 Francisco JoséGarcía-Vidal Jingjing Zhang Liangliang Liu Yu Luo Zhuo Li 《Advanced Photonics Nexus》 2024年第5期58-66,共9页
Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-per... Recent breakthroughs in the field of non-Hermitian physics present unprecedented opportunities,from fundamental theories to cutting-edge applications such as multimode lasers,unconventional wave transport,and high-performance sensors.The exceptional point,a spectral singularity widely existing in non-Hermitian systems,provides an indispensable route to enhance the sensitivity of optical detection.However,the exceptional point of the forementioned systems is set once the system is built or fabricated,and machining errors make it hard to reach such a state precisely.To this end,we develop a highly tunable and reconfigurable exceptional point system,i.e.,a single spoof plasmonic resonator suspended above a substrate and coupled with two freestanding Rayleigh scatterers.Our design offers great flexibility to control exceptional point states,enabling us to dynamically reconfigure the exceptional point formed by various multipolar modes across a broadband frequency range.Specifically,we experimentally implement five distinct exceptional points by precisely manipulating the positions of two movable Rayleigh scatterers.In addition,the enhanced perturbation strength offers remarkable sensitivity enhancement for detecting deep-subwavelength particles with the minimum dimension down to 0.001λ(withλto be the free-space wavelength). 展开更多
关键词 non-Hermitian optics spoof localized surface plasmons exceptional points ultrasensitive microwave sensors
下载PDF
Ultrasensitive nanosensors based on localized surface plasmon resonances:From theory to applications 被引量:5
14
作者 Wen Chen Huatian Hu +3 位作者 Wei Jiang Yuhao Xu Shunping Zhang Hongxing Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期58-78,共21页
The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak ... The subwavelength confinement feature of localized surface plasmon resonance(LSPR) allows plasmonic nanostructures to be functionalized as powerful platforms for detecting various molecular analytes as well as weak processes with nanoscale spatial resolution. One of the main goals of this field of research is to lower the absolute limit-of-detection(LOD)of LSPR-based sensors. This involves the improvement of(i) the figure-of-merit associated with structural parameters such as the size, shape and interparticle arrangement and,(ii) the spectral resolution. The latter involves advanced target identification and noise reduction techniques. By highlighting the strategies for improving the LOD, this review introduces the fundamental principles and recent progress of LSPR sensing based on different schemes including 1) refractometric sensing realized by observing target-induced refractive index changes, 2) plasmon rulers based on target-induced relative displacement of coupled plasmonic structures, 3) other relevant LSPR-based sensing schemes including chiral plasmonics,nanoparticle growth, and optomechanics. The ultimate LOD and the future trends of these LSPR-based sensing are also discussed. 展开更多
关键词 plasmonic sensing localized surface plasmon resonance plasmon rulers NANOPARTICLES
下载PDF
Plasmonic interactions between a perforated gold film and a thin gold film 被引量:1
15
作者 周昕 李宏建 +3 位作者 谢素霞 付少丽 徐海清 吴金军 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期537-543,共7页
Based on the finite difference time domain method, we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold ... Based on the finite difference time domain method, we investigated theoretically the optical properties and the plasmonic interactions between a gold film perforated with periodic sub-wavelength holes and a thin gold film. We showed that the plasmon resonant energies and intensities depend strongly on the thicknesses of the two films and the lattice constant. Based on the distributions of normal electric field component Ez, tangential electric field component Ey and total energy, we showed that the optical transmission is due to the collaboration of the localized waveguide resonance, the surface plasmon resonance and the coupling of the fiat-surface plasmon of the two layers. 展开更多
关键词 plasmonic interaction localized waveguide resonance surface plasmon resonance surface plasmon coupling
下载PDF
High-Speed Parallel Plasmonic Direct-Writing Nanolithography Using Metasurface-Based Plasmonic Lens 被引量:1
16
作者 Yueqiang Hu Ling Li +5 位作者 Rong Wang Jian Song Hongdong Wang Huigao Duan Jiaxin Ji Yonggang Meng 《Engineering》 SCIE EI 2021年第11期1623-1630,共8页
Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(... Simple and efficient nanofabrication technology with low cost and high flexibility is indispensable for fundamental nanoscale research and prototyping.Lithography in the near field using the surface plasmon polariton(i.e.,plasmonic lithography)provides a promising solution.The system with high stiffness passive nanogap control strategy on a high-speed rotating substrate is one of the most attractive highthroughput methods.However,a smaller and steadier plasmonic nanogap,new scheme of plasmonic lens,and parallel processing should be explored to achieve a new generation high resolution and reliable efficient nanofabrication.Herein,a parallel plasmonic direct-writing nanolithography system is established in which a novel plasmonic flying head is systematically designed to achieve around 15 nm minimum flying-height with high parallelism at the rotating speed of 8–18 m·s^(-1).A multi-stage metasurface-based polarization insensitive plasmonic lens is proposed to couple more power and realize a more confined spot compared with conventional plasmonic lenses.Parallel lithography of the nanostructures with the smallest(around 26 nm)linewidth is obtained with the prototyping system.The proposed system holds great potential for high-freedom nanofabrication with low cost,such as planar optical elements and nano-electromechanical systems. 展开更多
关键词 Nanofabrication Surface plasmon polariton LITHOGRAPHY plasmonic flying head plasmonic lens
下载PDF
A time-dependent density functional theory investigation of plasmon resonances of linear Au atomic chains
17
作者 刘丹丹 张红 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期345-349,共5页
We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length... We report theoretical studies on the plasmon resonances in linear Au atomic chains by using ab initio time- dependent density functional theory. The dipole responses are investigated each as a function of chain length. They converge into a single resonance in the longitudinal mode but split into two transverse modes. As the chain length increases, the longitudinal plasmon mode is redshifted in energy while the transverse modes shift in the opposite direction (blueshifts). In addition, the energy gap between the two transverse modes reduces with chain length increasing. We find that there are unique characteristics, different from those of other metallic chains. These characteristics are crucial to atomic-scale engineering of single-molecule sensing, optical spectroscopy, and so on. 展开更多
关键词 plasmon resonance time-dependent density functional theory longitudinal plasmonmode transverse plasmon mode
下载PDF
Surface plasmon resonance-induced visible-light photocatalytic performance of silver/silver molybdate composites 被引量:6
18
作者 杨祥龙 王尹 +3 位作者 徐骁 瞿阳 丁星 陈浩 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期260-269,共10页
Novel silver/silver molybdate(Ag/Ag2MoO4) composites with surface plasmon resonance(SPR)-enhanced photocatalytic performance were successfully fabricated via a facile one-pot hydrothermal route with the presence o... Novel silver/silver molybdate(Ag/Ag2MoO4) composites with surface plasmon resonance(SPR)-enhanced photocatalytic performance were successfully fabricated via a facile one-pot hydrothermal route with the presence of sodium dodecyl sulfate(SDS) in this study.The as prepared silver/silver molybdate(Ag/Ag2MoO4) composites were systematically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and ultraviolet-visible diffuse reflectance absorption spectroscopy(DRS) in order to investigate their crystal structure,morphology and optical property as well.The photocatalytic activities of the composites were subsequently evaluated by their ability to degrade rhodamine B(RhB) under visible-light irradiation.Varies of controlled experiments were then carefully operated to gain a deep insight into the assembling of Ag/Ag2MoO4composites.It was found that preparation conditions such as pH,reaction time,and the amount of surfactant played important roles in the formation of composites with octahedral microstructures.And the composite obtained at 160 ℃ using 0.5 g of sodium dodecyl sulfate exhibited the highest photocatalytic performance under visible-light irradiation.Capture experiments were also conducted to clarify the function of different active species generated on the surface of Ag/Ag2MoO4during the photocatalytic process,in which both holes and ·OH radicals were found to play crucial role in photocatalytic removal of RhB under visible light irradiation.A possible photocatalytic mechanism of Ag/Ag2MoO4 was finally proposed on the basis of all the results to explain the higher photocatalytic activity of the octahedral Ag/Ag2MoO4 composites.It was inferred that the photoinduced "hot" electrons can quickly transfer from the Ag NPs to the conduction band of Ag2MoO4 and react with oxygen and H2O to generate a large quality of active radicals such as ·OH and ·O2^- because of the SPR effects.Besides,this SPR effects of Ag nanoparticles deposited on the surface of Ag2MoO4 can not only dramatically amplify its light absorption,especially in the visible region,but also promote the separation of photoexcited electron-hole pairs and effectively decrease electron-hole recombination. 展开更多
关键词 SILVER Silver molybdate Sodium dodecyl sulfate Photocatalytic activity Surface plasmon resonance Rhodamine B
下载PDF
A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale 被引量:7
19
作者 李志全 朴瑞琦 +2 位作者 赵晶晶 孟晓云 童凯 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期441-447,共7页
A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong fie... A novel nanolaser structure based on a hybrid plasmonic waveguide is proposed and investigated. The coupling between the metal nanowire and the high-index semiconductor nanowire with optical gain leads to a strong field enhancement in the air gap region and low propagation loss, which enables the realization of lasing at the deep subwavelength scale.By optimizing the geometric parameters of the structure, a minimal lasing threshold is achieved while maintaining the capacity of ultra-deep subwavelength mode confinement. Compared with the previous coupled nanowire pair based hybrid plasmonic structure, a lower threshold can be obtained with the same geometric parameters. The proposed nanolaser can be integrated into a miniature chip as a nanoscale light source and has the potential to be widely used in optical communication and optical sensing technology. 展开更多
关键词 surface plasmon hybrid plasmonic waveguides nanolasers
下载PDF
Plasmonically induced reflection in metal-insulator-metal waveguides with two silver baffles coupled square ring resonator 被引量:2
20
作者 张志东 马连俊 +7 位作者 高飞 张彦军 唐军 曹慧亮 张斌珍 王继成 闫树斌 薛晨阳 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期312-316,共5页
A plasmonic waveguide coupled system that is composed of a square ring cavity and a metal-insulator-metal (MIM) waveguide with two silver baffles is proposed. The transmission and reflection properties of the propos... A plasmonic waveguide coupled system that is composed of a square ring cavity and a metal-insulator-metal (MIM) waveguide with two silver baffles is proposed. The transmission and reflection properties of the proposed plasmonic system are investigated numerically using the finite element method. The normalized Hz field distributions are calculated to analyze the transmission mode in the plasmonic system. The extreme destructive interference between light mode and dark mode causes plasmonically induced reflection (PIR) window in the transmission spectrum. The PIR window is fitted using the coupled mode theory. The analytical result agrees with the simulation result approximately. In addition, the PIR window can be controlled by adjusting structural parameters and filling different dielectric into the MIM waveguide and the square ring cavity. The results provide a new approach to designing plasmonic devices. 展开更多
关键词 surface plasmon polaritons plasmonically induced reflection metal-insulator-metal finite element method
下载PDF
上一页 1 2 227 下一页 到第
使用帮助 返回顶部