Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dime...Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.展开更多
Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing ...Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.展开更多
Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,includ...Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.展开更多
This paper is the continuation of our previous research in which we studied such aspects of CARS spectroscopy in dipole-active crystals by polaritons as the regimes of coherent simultaneous propagation of three waves ...This paper is the continuation of our previous research in which we studied such aspects of CARS spectroscopy in dipole-active crystals by polaritons as the regimes of coherent simultaneous propagation of three waves (anti-Stokes, Stokes, and the pump field) to increase the efficiency of CARS as a spectroscopic method. In our previous research, we have shown the possibility of the existence of simultons at all frequencies of interacting waves. All interacting waves were supposed to be linearly polarised and plane, the medium was assumed to be nonmagnetic, and the medium was transparent at frequencies of anti-Stokes, Stokes, and the pump field (laser). The purpose of the present paper is to consider the energy carried by electromagnetic waves and its relationship with the gain factor and velocity of the simultons.展开更多
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-...A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.展开更多
Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telec...Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration.展开更多
The properties of surface magnetoplasmon polaritons(SMPPs)in a symmetric structure,composed of two semi-infinite regions of high-density two-dimensional electron gas(2DEG)separated by a thin film in Voigt configuratio...The properties of surface magnetoplasmon polaritons(SMPPs)in a symmetric structure,composed of two semi-infinite regions of high-density two-dimensional electron gas(2DEG)separated by a thin film in Voigt configuration,are investigated.The normal and absorption dispersion relations for the transverse magnetic polarization are derived by correlating Maxwell’s equation and the boundary conditions.It is demonstrated that the features of SMPPs are greatly influenced by the external magnetic field,collision frequency of 2DEG,the dielectric constant,and the thickness of the thin film,suggesting that the locations and propagation lengths of SMPPs can be governed accordingly.It is shown that the symmetry of the physical geometry preserves the symmetry of the dispersion relations of SMPPs.Furthermore,it is discovered that as the external magnetic field increases,the penetration depth of SMPPs decreases,while their energy loss reduces,implying that plasmons can propagate for longer distances.Additionally,it is observed that SMPPs in the symmetric configuration have a longer lifetime than those in the asymmetric configuration.展开更多
We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's...We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.展开更多
We study modulational instability of a resonantly polariton condensate in a discrete lattice.Employing a discrete gain-saturation model,we derive the dispersion relation for the modulational instability by means of th...We study modulational instability of a resonantly polariton condensate in a discrete lattice.Employing a discrete gain-saturation model,we derive the dispersion relation for the modulational instability by means of the linear-stability analysis.Effects of the pumping strength,the nonlinearity,the strength of the detuning,and the coupling strength on the modulation instability are investigated.It is found that the interplay between these parameters will dramatically change the modulational instability condition.We believe that the predicted results in this work can be useful for future possible experiment of exciton-polariton condensate in lattices.展开更多
The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for...The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is a linearly polarized plane electromagnetic wave. We report the results of the theoretical investigation of the possibility of the existence of a regime of pulse propagation as simultaneous travel of solitary waves in coherent anti-Stokes stimulated Raman scattering by polaritons in anisotropic crystals. The emphasis was made on the existence of both Stokes and anti-Stokes pulses propagating with two stable and perpendicular to the direction of travel polarizations. We showed the theoretical possibility of simultaneous propagation of pulses not only at frequencies of Stokes and anti-Stokes waves but the pump frequency as well. We obtained the expression for the gain factor g. It is also shown that the expression for g is consistent with the experimental results for the spectra of ZnS.展开更多
In this paper,we report the exciton polaritons in both positive and negative detuning micro cavities based on InGaN multi-quantum wells(MQWs)and the first polariton lasing in InGaN/GaN MQWs at room temperature by util...In this paper,we report the exciton polaritons in both positive and negative detuning micro cavities based on InGaN multi-quantum wells(MQWs)and the first polariton lasing in InGaN/GaN MQWs at room temperature by utilizing a 4.5λFabry-Perot(F-P)cavity with double dielectric distributed Bragg reflectors(DBRs).Double thresholds corresponding respectively to polariton lasing and photonic lasing are observed along with half-width narrowing and peak blue-shifts.The threshold of polariton lasing is about half of the threshold of photonic lasing.Our results paved a substantial way for ultra-low threshold lasers and room temperature Bose-Einstein Condensate(BEC)in nitride semiconductors.展开更多
A unidirectional surface plasmon polaritons(SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol(PVA) fil...A unidirectional surface plasmon polaritons(SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol(PVA) film and a silver rectangle block. The generation efficiency of this SPPs generator is investigated using the finite difference time domain method. Due to the presence of the silver rectangle block, the SPPs generation efficiency of the asymmetric single nanoslit with PVA film can be greatly enhanced and the corresponding wavelength with the maximum enhancement factor can be tuned flexibly. The influence of the structural parameters on the generation efficiency is also investigated for the enhanced unidirectional SPPs generator.展开更多
As the combination of surface plasmon polariton and femtosecond laser pulse,femtosecond surface plasmon polariton has both nanoscale spatial resolution and femtosecond temporal resolution,and thus provides promising m...As the combination of surface plasmon polariton and femtosecond laser pulse,femtosecond surface plasmon polariton has both nanoscale spatial resolution and femtosecond temporal resolution,and thus provides promising methods for light field manipulation and light-matter interaction in extreme small spatiotemporal scales.Nowadays,the research on femtosecond surface plasmon polariton is mainly concentrated on two aspects:one is investigation and characterization of excitation,propagation,and dispersion properties of femtosecond surface plasmon polariton in different structures or materials;the other one is developing new applications based on its unique properties in the fields of nonlinear enhancement,pulse shaping,spatiotemporal super-resolved imaging,and others.Here,we introduce the research progress of properties and applications of femtosecond surface plasmon polariton,and prospect its future research trends.With the further development of femtosecond surface plasmon polariton research,it will have a profound impact on nano-optoelectronics,molecular dynamics,biomedicine and other fields.展开更多
Surface plasmon polaritons excited by an electron beam can be transformed into coherent and tunable light radiation waves with power enhancement in the simple structure of a metal film with a dielectric medium loading...Surface plasmon polaritons excited by an electron beam can be transformed into coherent and tunable light radiation waves with power enhancement in the simple structure of a metal film with a dielectric medium loading. In this paper, the process of the radiation transformation of this radiation, and the dependencies of the radiation characteristics on the parameters of the structure and the electron beam are studied in detail. The radiation power enhancement is greatly influenced by the beam energy and the film thickness in the infrared to ultraviolet frequency region. Up to 122 times radiation power enhancement and 6.5% radiation frequency tuning band can be obtained by optimizing the beam energy and the parameters of the film.展开更多
We theoretically investigate the control of surface plasmon polariton(SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light be...We theoretically investigate the control of surface plasmon polariton(SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light beam in a dielectric medium is used to generate SPPs at the interface of dielectric and graphene medium. The positive, negative absorption, and dispersion properties of SPPs are modified and controlled by the control and Kerr fields. A large amplification(negative absorption) is noted for SPPs under the Kerr nonlinearity. The normal/anomalous slope of dispersion and propagation length of SPPs is modified and controlled with Kerr nonlinearity. This leads to significant variation in slow and fast SPP propagation. The controlled slow and fast SPP propagation may predict significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster, and sensing technology.展开更多
A new type of cavity polariton,the optical Tamm state(OTS) polariton,is proposed to be realized by sandwiching a quantum well(QW) between a gold layer and a distributed Bragg reflector(DBR).It is shown that OTS ...A new type of cavity polariton,the optical Tamm state(OTS) polariton,is proposed to be realized by sandwiching a quantum well(QW) between a gold layer and a distributed Bragg reflector(DBR).It is shown that OTS polaritons can be generated from the strong couplings between the QW excitons and the free OTSs.In addition,if a second gold layer is introduced into the bottom of the DBR,two independent free OTSs can interact strongly with the QW excitons to produce extra OTS polaritons.展开更多
We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, th...We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.展开更多
Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system, in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness...Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system, in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness, are theoret~ ically calculated and analyzed. Due to the high permittivity of the polymer film, at proper polymer film thicknesses, the index-matching condition of the dielectrics at both sides of the metal can be satisfied for supporting LRSPP modes, and the electromagnetic field above the metal can be localized well. It is found that these LRSPP modes have both long propagation lengths and subwavelength mode expansion above the metal at the optimal polymer film thickncsses. Furthermore, the requirements on the refractive index and the thickness of the polymer film to support LRSPP modes at the optimal thicknesses are found to be not critical.展开更多
Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits.However,to provide stronger field confinement,larger wid...Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits.However,to provide stronger field confinement,larger width of strip is required to load deeper grooves,which is cumbersome in modern large-scale integrated circuits and chips.In this work,a new spoof SPP transmission line (TL) with zigzag grooves is proposed.This new structure can achieve stronger field confinement compared to conventional one with the same strip width.In other words,the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size.Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs.Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size.Furthermore,two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration.Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL.Hence,this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.展开更多
基金supported by the Federal Program'Priority 2030'and NSFC(Project 62350610272)A.K.Samusev acknowledges Deutsche Forschungsgemeinschaft-project No.529710370。
文摘Deeply subwavelength lasers(or nanolasers)are highly demanded for compact on-chip bioimaging and sensing at the nanoscale.One of the main obstacles for the development of single-particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating.Here we ex-ploit exciton-polariton condensation and mirror-image Mie modes in a cuboid CsPbBr3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53μm from its ultra-small(≈0.007μm3 or≈λ3/20)semiconductor nanocav-ity.The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct com-parison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters.Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy(≈35 meV),re-fractive index(>2.5 at low temperature),and luminescence quantum yield of CsPbBr3,but also by the optimization of po-laritons condensation on the Mie resonances with quality factors improved by the metallic substrate.Moreover,the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr3,which govern polaritons condensation path.Such chemically synthesized colloidal CsPbBr3 nanolasers can be potentially de-posited on arbitrary surfaces,which makes them a versatile tool for integration with various on-chip systems.
基金supports from the National Natural Science Foundation of China(Grant Nos.62288101,and 61971134)National Key Research and Development Program of China(Grant Nos.2021YFB3200502,and 2017YFA0700200)+2 种基金the Major Project of the Natural Science Foundation of Jiangsu Province(Grant No.BK20212002)the Fundamental Research Funds for Central Universities(Grant No.2242021R41078)the 111 Project(Grant No.111-2-05).
文摘Smart antennas have received great attention for their potentials to enable communication and perception functions at the same time.However,realizing the function synthesis remains an open challenge,and most existing system solutions are limited to narrow operating bands and high complexity and cost.Here,we propose an externally perceivable leakywave antenna(LWA)based on spoof surface plasmon polaritons(SSPPs),which can realize adaptive real-time switching between the“radiating”and“non-radiating”states and beam tracking at different frequencies.With the assistance of computer vision,the smart SSPP-LWA is able to detect the external target user or jammer,and intelligently track the target by self-adjusting the operating frequency.The proposed scheme helps to reduce the power consumption through dynamically controlling the radiating state of the antenna,and improve spectrum utilization and avoid spectrum conflicts through intelligently deciding the radiating frequency.On the other hand,it is also helpful for the physical layer communication security through switching the antenna working state according to the presence of the target and target beam tracking in real time.In addition,the proposed smart antenna can be generalized to other metamaterial systems and could be a candidate for synaesthesia integration in future smart antenna systems.
基金supported by the National Natural Science Foundation of China(Nos.52106099 and 51576004)the Natural Science Foundation of Shandong Province(No.ZR2022YQ57)the Taishan Scholars Program.
文摘Phonon polaritons(PhPs)exhibit directional in-plane propagation and ultralow losses in van der Waals(vdW)crystals,offering new possibilities for controlling the flow of light at the nanoscale.However,these PhPs,including their directional propagation,are inherently determined by the anisotropic crystal structure of the host materials.Although in-plane anisotropic PhPs can be manipulated by twisting engineering,such as twisting individual vdW slabs,dynamically adjusting their propagation presents a significant challenge.The limited application of the twisted bilayer structure in bare films further restricts its usage.In this study,we present a technique in which anisotropic PhPs supported by bare biaxial vdW slabs can be actively tuned by modifying their local dielectric environment.Excitingly,we predict that the iso-frequency contour of PhPs can be reoriented to enable propagation along forbidden directions when the crystal is placed on a substrate with a moderate negative permittivity.Besides,we systematically investigate the impact of polaritonic coupling on near-field radiative heat transfer(NFRHT)between heterostructures integrated with different substrates that have negative permittivity.Our main findings reveal that through the analysis of dispersion contour and photon transmission coefficient,the excitation and reorientation of the fundamental mode facilitate increased photon tunneling,thereby enhancing heat transfer between heterostructures.Conversely,the annihilation of the fundamental mode hinders heat transfer.Furthermore,we find the enhancement or suppression of radiative energy transport depends on the relative magnitude of the slab thickness and the vacuum gap width.Finally,the effect of negative permittivity substrates on NFRHT along the[001]crystalline direction ofα-MoO3 is considered.The spectral band where the excited fundamental mode resulting from the negative permittivity substrates is shifted to the first Reststrahlen Band(RB 1)ofα-MoO_(3) and is widened,resulting in more significant enhancement of heat flux from RB 1.We anticipate our results will motivate new direction for dynamical tunability of the PhPs in photonic devices.
文摘This paper is the continuation of our previous research in which we studied such aspects of CARS spectroscopy in dipole-active crystals by polaritons as the regimes of coherent simultaneous propagation of three waves (anti-Stokes, Stokes, and the pump field) to increase the efficiency of CARS as a spectroscopic method. In our previous research, we have shown the possibility of the existence of simultons at all frequencies of interacting waves. All interacting waves were supposed to be linearly polarised and plane, the medium was assumed to be nonmagnetic, and the medium was transparent at frequencies of anti-Stokes, Stokes, and the pump field (laser). The purpose of the present paper is to consider the energy carried by electromagnetic waves and its relationship with the gain factor and velocity of the simultons.
基金support of the National Natural Science Foundation of China(Grant Nos.52275565,NSFC-JSPS:52011540005,and 62104155)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515011667)the Guangdong Kangyi Special Fund(Grant No.2020KZDZX1173).
文摘A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.
文摘Active control of surface plasmon polaritons(SPPs)is highly desired for nanophotonics.Here we employ a phase change material Ge_(2)Sb_(2)Te_(5)(GST)to actively manipulate the propagating direction of SPPs at the telecom wavelength.By utilizing the phase transition-induced refractive index change of GST,coupled with interference effects,a nanoantenna pair containing GST is designed to realize switchable one-way launching of SPPs.Devices based on the nanoantenna pairs are proposed to manipulate SPPs,including the direction tuning of SPP beams,switchable SPP focusing,and switchable cosine–Gauss SPP beam generating.Our design can be employed in compact optical circuits and photonics integration.
基金supported by National Natural Science Foundation of China(No.11975175).
文摘The properties of surface magnetoplasmon polaritons(SMPPs)in a symmetric structure,composed of two semi-infinite regions of high-density two-dimensional electron gas(2DEG)separated by a thin film in Voigt configuration,are investigated.The normal and absorption dispersion relations for the transverse magnetic polarization are derived by correlating Maxwell’s equation and the boundary conditions.It is demonstrated that the features of SMPPs are greatly influenced by the external magnetic field,collision frequency of 2DEG,the dielectric constant,and the thickness of the thin film,suggesting that the locations and propagation lengths of SMPPs can be governed accordingly.It is shown that the symmetry of the physical geometry preserves the symmetry of the dispersion relations of SMPPs.Furthermore,it is discovered that as the external magnetic field increases,the penetration depth of SMPPs decreases,while their energy loss reduces,implying that plasmons can propagate for longer distances.Additionally,it is observed that SMPPs in the symmetric configuration have a longer lifetime than those in the asymmetric configuration.
基金Project supported by the National Natural Science Foundation of China (Grant No. 16Z103060007) (PA)。
文摘We investigate the transfer of phosphorescent energy between co-assembled metallophosphors in crystalline nanostructures [Angew. Chem. Int. Ed. 57 7820(2018) and J. Am. Chem. Soc. 140 4269(2018)]. Neither Dexter's nor Forster's mechanism of resonance energy transfer(RET) could account fully for the observed rates, which exceed 85% with significant temperature dependence. But there exists an alternative pathway on RET mediated by intermediate states of resonantly confined exciton–polaritons. Such a mechanism was used to analyze artificial photosynthesis in organic fluorescents [Phys.Rev. Lett. 122 257402(2019)]. For metallophosphors, the confined modes act as extended states lying between the molecular S_(1) and T_(1) states, offering a bridge for the long-lived T_(1) excitons to migrate from donors to acceptors. Population dynamics with parameters taken entirely based on experiments fits the observed lifetimes of phosphorescence across a broad range of doping and temperature.
基金the National Natural Science Foundation of China(Grant No.11805116)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2023-JC-YB-037).
文摘We study modulational instability of a resonantly polariton condensate in a discrete lattice.Employing a discrete gain-saturation model,we derive the dispersion relation for the modulational instability by means of the linear-stability analysis.Effects of the pumping strength,the nonlinearity,the strength of the detuning,and the coupling strength on the modulation instability are investigated.It is found that the interplay between these parameters will dramatically change the modulational instability condition.We believe that the predicted results in this work can be useful for future possible experiment of exciton-polariton condensate in lattices.
文摘The system of shortened Maxwell’s equations simulating the processes of evolution of the stimulated Raman scattering (SRS) by polaritons in anisotropic dipole-active crystals is obtained. The theory was developed for the case of cubic crystals which become anisotropic due to the deformation of the dielectric constant by the linearly polarized pump wave. The pump field is a linearly polarized plane electromagnetic wave. We report the results of the theoretical investigation of the possibility of the existence of a regime of pulse propagation as simultaneous travel of solitary waves in coherent anti-Stokes stimulated Raman scattering by polaritons in anisotropic crystals. The emphasis was made on the existence of both Stokes and anti-Stokes pulses propagating with two stable and perpendicular to the direction of travel polarizations. We showed the theoretical possibility of simultaneous propagation of pulses not only at frequencies of Stokes and anti-Stokes waves but the pump frequency as well. We obtained the expression for the gain factor g. It is also shown that the expression for g is consistent with the experimental results for the spectra of ZnS.
基金National Key Research and Development Program of China(No.2016YFB0400803)the Science Challenge Project(No.TZ2016003)the National Natural Science Foundation of China(Nos.61704140,U1505253).
文摘In this paper,we report the exciton polaritons in both positive and negative detuning micro cavities based on InGaN multi-quantum wells(MQWs)and the first polariton lasing in InGaN/GaN MQWs at room temperature by utilizing a 4.5λFabry-Perot(F-P)cavity with double dielectric distributed Bragg reflectors(DBRs).Double thresholds corresponding respectively to polariton lasing and photonic lasing are observed along with half-width narrowing and peak blue-shifts.The threshold of polariton lasing is about half of the threshold of photonic lasing.Our results paved a substantial way for ultra-low threshold lasers and room temperature Bose-Einstein Condensate(BEC)in nitride semiconductors.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11174237 and 10974161), the National Basic Research Program of China (Grant No. 2013CB328904), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. SWJTU 12CX084 and SWJTU2(/10ZT06), and the Innovation Fund for Ph.D. Student of Southwest Jiaotong University, China.
文摘A unidirectional surface plasmon polaritons(SPPs) generator with greatly enhanced generation efficiency is proposed. The SPPs generator consists of an asymmetric single nanoslit coated with a polyviny alcohol(PVA) film and a silver rectangle block. The generation efficiency of this SPPs generator is investigated using the finite difference time domain method. Due to the presence of the silver rectangle block, the SPPs generation efficiency of the asymmetric single nanoslit with PVA film can be greatly enhanced and the corresponding wavelength with the maximum enhancement factor can be tuned flexibly. The influence of the structural parameters on the generation efficiency is also investigated for the enhanced unidirectional SPPs generator.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91750205,61427819,U1701661,11674178,and 61975128)the Leading Talents of Guangdong Province Program,China(Grant No.00201505)+2 种基金the Natural Science Foundation of Guangdong Province,China(Grant Nos.2016A030312010 and 2017A030313351)the Science and Technology Innovation Commission of Shenzhen City(Grant Nos.JCYJ20180507182035270,KQTD2017033011044403,KQJSCX20170727100838364,ZDSYS201703031605029,and JCYJ2017818144338999)the K.C.Wong Education Foundation(Grant No.GJTD-2018-08)。
文摘As the combination of surface plasmon polariton and femtosecond laser pulse,femtosecond surface plasmon polariton has both nanoscale spatial resolution and femtosecond temporal resolution,and thus provides promising methods for light field manipulation and light-matter interaction in extreme small spatiotemporal scales.Nowadays,the research on femtosecond surface plasmon polariton is mainly concentrated on two aspects:one is investigation and characterization of excitation,propagation,and dispersion properties of femtosecond surface plasmon polariton in different structures or materials;the other one is developing new applications based on its unique properties in the fields of nonlinear enhancement,pulse shaping,spatiotemporal super-resolved imaging,and others.Here,we introduce the research progress of properties and applications of femtosecond surface plasmon polariton,and prospect its future research trends.With the further development of femtosecond surface plasmon polariton research,it will have a profound impact on nano-optoelectronics,molecular dynamics,biomedicine and other fields.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339801)the National Natural Science Foundation of China(Grant Nos.61231005,11305030,and 612111076)the National High Technology Research and Development Program of China(Grant No.2011AA010204)
文摘Surface plasmon polaritons excited by an electron beam can be transformed into coherent and tunable light radiation waves with power enhancement in the simple structure of a metal film with a dielectric medium loading. In this paper, the process of the radiation transformation of this radiation, and the dependencies of the radiation characteristics on the parameters of the structure and the electron beam are studied in detail. The radiation power enhancement is greatly influenced by the beam energy and the film thickness in the infrared to ultraviolet frequency region. Up to 122 times radiation power enhancement and 6.5% radiation frequency tuning band can be obtained by optimizing the beam energy and the parameters of the film.
文摘We theoretically investigate the control of surface plasmon polariton(SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light beam in a dielectric medium is used to generate SPPs at the interface of dielectric and graphene medium. The positive, negative absorption, and dispersion properties of SPPs are modified and controlled by the control and Kerr fields. A large amplification(negative absorption) is noted for SPPs under the Kerr nonlinearity. The normal/anomalous slope of dispersion and propagation length of SPPs is modified and controlled with Kerr nonlinearity. This leads to significant variation in slow and fast SPP propagation. The controlled slow and fast SPP propagation may predict significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster, and sensing technology.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61106045)
文摘A new type of cavity polariton,the optical Tamm state(OTS) polariton,is proposed to be realized by sandwiching a quantum well(QW) between a gold layer and a distributed Bragg reflector(DBR).It is shown that OTS polaritons can be generated from the strong couplings between the QW excitons and the free OTSs.In addition,if a second gold layer is introduced into the bottom of the DBR,two independent free OTSs can interact strongly with the QW excitons to produce extra OTS polaritons.
基金Project supported by the National Natural Science Foundation of China(Grant No.11105002)the Open-end Fund of State Key Laboratory of Structural Analysis for Industrial Equipment,China(Grant No.GZ1215)+1 种基金the Natural Science Foundation for University in Anhui Province of China(Grant No.KJ2013A106)the Doctoral Scientific Research Funds of Anhui University of Science and Technology,China
文摘We analyze the electromagnetic interaction between local surface plasmon polaritons (SPPs) and an atmospheric surface wave plasma jet (ASWPJ) in combination with our designed discharge device. Before discharge, the excitation of the SPPs and the spatial distribution of the enhanced electric field are analyzed. During discharge, the critical breakdown electric field of the gases at atmospheric gas pressure and the surface wave of the SPPs converted into electron plasma waves at resonant points are studied. After discharge, the ionization development process of the ASWPJ is simulated using a two- dimensional fluid model. Our results suggest that the local enhanced electric field of SPPs is merely the precondition of gas breakdown, and the key mechanism in maintaining the discharge development of a low-power ASWPJ is the wave-mode conversion of the local enhanced electric field at the resonant point.
基金supported by the National Natural Science Foundation of China (Grant Nos 10434020,10821062 and 10804004)the State Key Development Program for Basic Research of China (Grant Nos 2007CB307001 and 2009CB930504)the Research Fund for the Doctoral Program of Higher Education of China (Grant No 200800011023)
文摘Long-range surface plasmon polariton (LRSPP) modes in an asymmetrical system, in which the thin metal film is sandwiched between a semi-infinite substrate and a high permittivity polymer film with a finite thickness, are theoret~ ically calculated and analyzed. Due to the high permittivity of the polymer film, at proper polymer film thicknesses, the index-matching condition of the dielectrics at both sides of the metal can be satisfied for supporting LRSPP modes, and the electromagnetic field above the metal can be localized well. It is found that these LRSPP modes have both long propagation lengths and subwavelength mode expansion above the metal at the optimal polymer film thickncsses. Furthermore, the requirements on the refractive index and the thickness of the polymer film to support LRSPP modes at the optimal thicknesses are found to be not critical.
基金the National Natural Science Foundation of China under Grant Nos.61871127,61701246,61631007,61571117,61501112,61501117,61522106,61722106,61701107,and 61701108,and 111 Project under Grant No.111-2-05.
文摘Ultrathin corrugated metallic structures have been proved to support spoof surface plasmon polariton (SPP) modes on two-dimension (2D) planar microwave circuits.However,to provide stronger field confinement,larger width of strip is required to load deeper grooves,which is cumbersome in modern large-scale integrated circuits and chips.In this work,a new spoof SPP transmission line (TL) with zigzag grooves is proposed.This new structure can achieve stronger field confinement compared to conventional one with the same strip width.In other words,the proposed spoof SPP TL behaves equivalently to a conventional one with much larger size.Dispersion analysis theoretically indicates the negative correlation between the ability of field confinement and cutoff frequencies of spoof SPP TLs.Numerical simulations indicate that the cutoff frequency of the proposed TL is lower than the conventional one and can be easily modified with the fixed size.Furthermore,two samples of the new and conventional spoof SPP TLs are fabricated for experimental demonstration.Measured S-parameters and field distributions verify the ultra-strong ability of field confinement of the proposed spoof SPP TL.Hence,this novel spoof SPP structure with ultra-strong field confinement may find wide applications in microwave and terahertz engineering.