期刊文献+
共找到140,788篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction and optimization of flue pressure in sintering process based on SHAP
1
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation predictION OPTIMIZATION
下载PDF
Development and validation of a nomogram model for predicting overall survival in patients with gastric carcinoma
2
作者 Guan-Zhong Liang Xiao-Sheng Li +4 位作者 Zu-Hai Hu Qian-Jie Xu Fang Wu Xiang-Lin Wu Hai-Ke Lei 《World Journal of Gastrointestinal Oncology》 2025年第2期132-143,共12页
BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise fore... BACKGROUND The prevalence and mortality rates of gastric carcinoma are disproportionately elevated in China,with the disease's intricate and varied characteristics further amplifying its health impact.Precise forecasting of overall survival(OS)is of paramount importance for the clinical management of individuals afflicted with this malignancy.AIM To develop and validate a nomogram model that provides precise gastric cancer prevention and treatment guidance and more accurate survival outcome prediction for patients with gastric carcinoma.METHODS Data analysis was conducted on samples collected from hospitalized gastric cancer patients between 2018 and 2020.Least absolute shrinkage and selection operator,univariate,and multivariate Cox regression analyses were employed to identify independent prognostic factors.A nomogram model was developed to predict gastric cancer patient outcomes.The model's predictability and discriminative ability were evaluated via receiver operating characteristic curves.To evaluate the clinical utility of the model,Kaplan-Meier and decision curve analyses were performed.RESULTS A total of ten independent prognostic factors were identified,including body mass index,tumor-node-metastasis(TNM)stage,radiation,chemotherapy,surgery,albumin,globulin,neutrophil count,lactate dehydrogenase,and platelet-to-lymphocyte ratio.The area under the curve(AUC)values for the 1-,3-,and 5-year survival prediction in the training set were 0.843,0.850,and 0.821,respectively.The AUC values were 0.864,0.820,and 0.786 for the 1-,3-,and 5-year survival prediction in the validation set,respectively.The model exhibited strong discriminative ability,with both the time AUC and time C-index exceeding 0.75.Compared with TNM staging,the model demonstrated superior clinical utility.Ultimately,a nomogram was developed via a web-based interface.CONCLUSION This study established and validated a novel nomogram model for predicting the OS of gastric cancer patients,which demonstrated strong predictive ability.Based on these findings,this model can aid clinicians in implementing personalized interventions for patients with gastric cancer. 展开更多
关键词 Gastric carcinoma predictION Overall survival NOMOGRAM PROSPECTIVE
下载PDF
Short-Term Rolling Prediction of Tropical Cyclone Intensity Based on Multi-Task Learning with Fusion of Deviation-Angle Variance and Satellite Imagery
3
作者 Wei TIAN Ping SONG +5 位作者 Yuanyuan CHEN Yonghong ZHANG Liguang WU Haikun ZHAO Kenny Thiam Choy LIM KAM SIAN Chunyi XIANG 《Advances in Atmospheric Sciences》 2025年第1期111-128,共18页
Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progr... Tropical cyclones(TCs)are one of the most serious types of natural disasters,and accurate TC activity predictions are key to disaster prevention and mitigation.Recently,TC track predictions have made significant progress,but the ability to predict their intensity is obviously lagging behind.At present,research on TC intensity prediction takes atmospheric reanalysis data as the research object and mines the relationship between TC-related environmental factors and intensity through deep learning.However,reanalysis data are non-real-time in nature,which does not meet the requirements for operational forecasting applications.Therefore,a TC intensity prediction model named TC-Rolling is proposed,which can simultaneously extract the degree of symmetry for strong TC convective cloud and convection intensity,and fuse the deviation-angle variance with satellite images to construct the correlation between TC convection structure and intensity.For TCs'complex dynamic processes,a convolutional neural network(CNN)is used to learn their temporal and spatial features.For real-time intensity estimation,multi-task learning acts as an implicit time-series enhancement.The model is designed with a rolling strategy that aims to moderate the long-term dependent decay problem and improve accuracy for short-term intensity predictions.Since multiple tasks are correlated,the loss function of 12 h and 24 h are corrected.After testing on a sample of TCs in the Northwest Pacific,with a 4.48 kt root-mean-square error(RMSE)of 6 h intensity prediction,5.78 kt for 12 h,and 13.94 kt for 24 h,TC records from official agencies are used to assess the validity of TC-Rolling. 展开更多
关键词 tropical cyclone INTENSITY structure rolling prediction MULTI-TASK
下载PDF
Early prediction cardiac arrest in intensive care units:the value of laboratory indicator trends
4
作者 Wentao Sang Jiaxin Ma +8 位作者 Xuan Zhang Shuo Wu Chang Pan Jiaqi Zheng Wen Zheng Qiuhuan Yuan Jian Zhang Jingjing Ma Feng Xu 《World Journal of Emergency Medicine》 2025年第1期67-70,共4页
The incidence of in-hospital cardiac arrest (IHCA) has increased over the past decade,with more than half occurring in intensive care units (ICUs).^([1])ICU cardiac arrest (ICU-CA)presents unique challenges,with worse... The incidence of in-hospital cardiac arrest (IHCA) has increased over the past decade,with more than half occurring in intensive care units (ICUs).^([1])ICU cardiac arrest (ICU-CA)presents unique challenges,with worse outcomes than those in monitored wards,highlighting the need for early detection and intervention.^([2])Up to 80%of patients exhibit signs of deterioration hours before IHCA.^([3])Although early warning scores based on vital signs are useful,their eff ectiveness in ICUs is limited due to abnormal physiological parameters.^([4])Laboratory markers,such as sodium,potassium,and lactate,are predictive of poor outcomes,^([5])but static measurements may not capture the patient’s trajectory.Trends in laboratory indicators,such as variability and extremes,may offer better predictive value.^([6])This study aimed to evaluate ICU-CA predictive factors,with a focus on vital signs and trends of laboratory indicators. 展开更多
关键词 prediction SIGNS ARREST
下载PDF
Dynamic intelligent prediction approach for landslide displacement based on biological growth models and CNN-LSTM
5
作者 WANG Ziqian FANG Xiangwei +3 位作者 ZHANG Wengang WANG Luqi WANG Kai CHEN Chao 《Journal of Mountain Science》 2025年第1期71-88,共18页
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg... Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides. 展开更多
关键词 Reservoir landslides Displacement prediction CNN LSTM Biological growth model
下载PDF
Association between Fish Consumption and Stroke Incidence Across Different Predicted Risk Populations:A Prospective Cohort Study from China
6
作者 Hongyue Hu Fangchao Liu +13 位作者 Keyong Huang Chong Shen Jian Liao Jianxin Li Chenxi Yuan Ying Li Xueli Yang Jichun Chen Jie Cao Shufeng Chen Dongsheng Hu Jianfeng Huang Xiangfeng Lu Dongfeng Gu 《Biomedical and Environmental Sciences》 2025年第1期15-26,共12页
Objective The relationship between fish consumption and stroke is inconsistent,and it is uncertain whether this association varies across predicted stroke risks.Methods A cohort study comprising 95,800 participants fr... Objective The relationship between fish consumption and stroke is inconsistent,and it is uncertain whether this association varies across predicted stroke risks.Methods A cohort study comprising 95,800 participants from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China project was conducted.A standardized questionnaire was used to collect data on fish consumption.Participants were stratified into low-and moderate-to-high-risk categories based on their 10-year stroke risk prediction scores.Hazard ratios(HRs)and 95%confidence intervals(CIs)were estimated using Cox proportional hazard models and additive interaction by relative excess risk due to interaction(RERI),attributable proportion(AP),and synergy index(SI).Results During 703,869 person-years of follow-up,2,773 incident stroke events were identified.Higher fish consumption was associated with a lower risk of stroke,particularly among moderate-to-high-risk individuals(HR=0.53,95%CI:0.47-0.60)than among low-risk individuals(HR=0.64,95%CI:0.49-0.85).A significant additive interaction between fish consumption and predicted stroke risk was observed(RERI=4.08,95%CI:2.80-5.36;SI=1.64,95%CI:1.42-1.89;AP=0.36,95%CI:0.28-0.43).Conclusion Higher fish consumption was associated with a lower risk of stroke,and this beneficial association was more pronounced in individuals with moderate-to-high stroke risk. 展开更多
关键词 Fish consumption STROKE predicted stroke risk Cohort study INTERACTION
下载PDF
A Machine Learning-Based Observational Constraint Correction Method for Seasonal Precipitation Prediction
7
作者 Bofei ZHANG Haipeng YU +5 位作者 Zeyong HU Ping YUE Zunye TANG Hongyu LUO Guantian WANG Shanling CHENG 《Advances in Atmospheric Sciences》 2025年第1期36-52,共17页
Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the nume... Seasonal precipitation has always been a key focus of climate prediction.As a dynamic-statistical combined method,the existing observational constraint correction establishes a regression relationship between the numerical model outputs and historical observations,which can partly predict seasonal precipitation.However,solving a nonlinear problem through linear regression is significantly biased.This study implements a nonlinear optimization of an existing observational constrained correction model using a Light Gradient Boosting Machine(LightGBM)machine learning algorithm based on output from the Beijing National Climate Center Climate System Model(BCC-CSM)and station observations to improve the prediction of summer precipitation in China.The model was trained using a rolling approach,and LightGBM outperformed Linear Regression(LR),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost).Using parameter tuning to optimize the machine learning model and predict future summer precipitation using eight different predictors in BCC-CSM,the mean Anomaly Correlation Coefficient(ACC)score in the 2019–22 summer precipitation predictions was 0.17,and the mean Prediction Score(PS)reached 74.The PS score was improved by 7.87%and 6.63%compared with the BCC-CSM and the linear observational constraint approach,respectively.The observational constraint correction prediction strategy with LightGBM significantly and stably improved the prediction of summer precipitation in China compared to the previous linear observational constraint solution,providing a reference for flood control and drought relief during the flood season(summer)in China. 展开更多
关键词 observational constraint LightGBM seasonal prediction summer precipitation machine learning
下载PDF
Predictive value of magnetic resonance imaging parameters combined with tumor markers for rectal cancer recurrence risk after surgery
8
作者 Lei Wu Jing-Jie Zhu +2 位作者 Xiao-Han Liang He Tong Yan Song 《World Journal of Gastrointestinal Surgery》 2025年第2期161-172,共12页
BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the cor... BACKGROUND An increasing number of studies to date have found preoperative magnetic resonance imaging(MRI)features valuable in predicting the prognosis of rectal cancer(RC).However,research is still lacking on the correlation between preoperative MRI features and the risk of recurrence after radical resection of RC,urgently necessitating further in-depth exploration.AIM To investigate the correlation between preoperative MRI parameters and the risk of recurrence after radical resection of RC to provide an effective tool for predicting postoperative recurrence.METHODS The data of 90 patients who were diagnosed with RC by surgical pathology and underwent radical surgical resection at the Second Affiliated Hospital of Bengbu Medical University between May 2020 and December 2023 were collected through retrospective analysis.General demographic data,MRI data,and tumor markers levels were collected.According to the reviewed data of patients six months after surgery,the clinicians comprehensively assessed the recurrence risk and divided the patients into high recurrence risk(37 cases)and low recurrence risk(53 cases)groups.Independent sample t-test andχ2 test were used to analyze differences between the two groups.A logistic regression model was used to explore the risk factors of the high recurrence risk group,and a clinical prediction model was constructed.The clinical prediction model is presented in the form of a nomogram.The receiver operating characteristic curve,Hosmer-Lemeshow goodness of fit test,calibration curve,and decision curve analysis were used to evaluate the efficacy of the clinical prediction model.RESULTS The detection of positive extramural vascular invasion through preoperative MRI[odds ratio(OR)=4.29,P=0.045],along with elevated carcinoembryonic antigen(OR=1.08,P=0.041),carbohydrate antigen 125(OR=1.19,P=0.034),and carbohydrate antigen 199(OR=1.27,P<0.001)levels,are independent risk factors for increased postoperative recurrence risk in patients with RC.Furthermore,there was a correlation between magnetic resonance based T staging,magnetic resonance based N staging,and circumferential resection margin results determined by MRI and the postoperative recurrence risk.Additionally,when extramural vascular invasion was integrated with tumor markers,the resulting clinical prediction model more effectively identified patients at high risk for postoperative recurrence,thereby providing robust support for clinical decision-making.CONCLUSION The results of this study indicate that preoperative MRI detection is of great importance for predicting the risk of postoperative recurrence in patients with RC.Monitoring these markers helps clinicians identify patients at high risk,allowing for more aggressive treatment and monitoring strategies to improve patient outcomes. 展开更多
关键词 Rectal cancer Magnetic resonance imaging RECURRENCE prediction model Tumor markers
下载PDF
Risk factors and a predictive model of diabetic foot in hospitalized patients with type 2 diabetes
9
作者 Ming-Zhuo Li Fang Tang +6 位作者 Ya-Fei Liu Jia-Hui Lao Yang Yang Jia Cao Ru Song Peng Wu Yi-Bing Wang 《World Journal of Diabetes》 2025年第3期44-54,共11页
BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset D... BACKGROUND The risk factors and prediction models for diabetic foot(DF)remain incompletely understood,with several potential factors still requiring in-depth investigations.AIM To identify risk factors for new-onset DF and develop a robust prediction model for hospitalized patients with type 2 diabetes.METHODS We included 6301 hospitalized patients with type 2 diabetes from January 2016 to December 2021.A univariate Cox model and least absolute shrinkage and selection operator analyses were applied to select the appropriate predictors.Nonlinear associations between continuous variables and the risk of DF were explored using restricted cubic spline functions.The Cox model was further employed to evaluate the impact of risk factors on DF.The area under the curve(AUC)was measured to evaluate the accuracy of the prediction model.RESULTS Seventy-five diabetic inpatients experienced DF.The incidence density of DF was 4.5/1000 person-years.A long duration of diabetes,lower extremity arterial disease,lower serum albumin,fasting plasma glucose(FPG),and diabetic nephropathy were independently associated with DF.Among these risk factors,the serum albumin concentration was inversely associated with DF,with a hazard ratio(HR)and 95%confidence interval(CI)of 0.91(0.88-0.95)(P<0.001).Additionally,a U-shaped nonlinear relationship was observed between the FPG level and DF.After adjusting for other variables,the HRs and 95%CI for FPG<4.4 mmol/L and≥7.0 mmol/L were 3.99(1.55-10.25)(P=0.004)and 3.12(1.66-5.87)(P<0.001),respectively,which was greater than the mid-range level(4.4-6.9 mmol/L).The AUC for predicting DF over 3 years was 0.797.CONCLUSION FPG demonstrated a U-shaped relationship with DF.Serum albumin levels were negatively associated with DF.The prediction nomogram model of DF showed good discrimination ability using diabetes duration,lower extremity arterial disease,serum albumin,FPG,and diabetic nephropathy(Clinicaltrial.gov NCT05519163). 展开更多
关键词 Type 2 diabetes Diabetic foot Nonlinear association prediction model Retrospective cohort
下载PDF
Rockburst prediction based on multi-featured drilling parameters and extreme tree algorithm for full-section excavated tunnel faces
10
作者 Wenhao Yi Mingnian Wang +2 位作者 Qinyong Xia Yongyi He Hongqiang Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期258-274,共17页
The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To... The suddenness, uncertainty, and randomness of rockbursts directly affect the safety of tunnel construction. The prediction of rockbursts is a fundamental aspect of mitigating or even eliminating rockburst hazards. To address the shortcomings of the current rockburst prediction models, which have a limited number of samples and rely on manual test results as the majority of their input features, this paper proposes rockburst prediction models based on multi-featured drilling parameters of rock drilling jumbo. Firstly, four original drilling parameters, namely hammer pressure (Ph), feed pressure (Pf), rotation pressure (Pr), and feed speed (VP), together with the rockburst grades, were collected from 1093 rockburst cases. Then, a feature expansion investigation was performed based on the four original drilling parameters to establish a drilling parameter feature system and a rockburst prediction database containing 42 features. Furthermore, rockburst prediction models based on multi-featured drilling parameters were developed using the extreme tree (ET) algorithm and Bayesian optimization. The models take drilling parameters as input parameters and rockburst grades as output parameters. The effects of Bayesian optimization and the number of drilling parameter features on the model performance were analyzed using the accuracy, precision, recall and F1 value of the prediction set as the model performance evaluation indices. The results show that the Bayesian optimized model with 42 drilling parameter features as inputs performs best, with an accuracy of 91.89%. Finally, the reliability of the models was validated through field tests. 展开更多
关键词 Rockburst prediction Drilling parameters Feature system Extreme tree(ET) Bayesian optimization
下载PDF
Application of ultrasound elastography and splenic size in predicting post-hepatectomy liver failure:Unveiling new clinical perspectives
11
作者 Shan Xu Tao Zhang +3 位作者 Bin-Bo He Jie Liu Tao Kong Qing-Yu Zeng 《World Journal of Gastroenterology》 2025年第4期151-155,共5页
In this article,we discuss the study by Cheng et al,published in the World Journal of Gastroenterology,focusing on predictive methods for post-hepatectomy liver failure(PHLF).PHLF is a common and serious complication,... In this article,we discuss the study by Cheng et al,published in the World Journal of Gastroenterology,focusing on predictive methods for post-hepatectomy liver failure(PHLF).PHLF is a common and serious complication,and accurate prediction is critical for clinical management.The study examines the potential of ultrasound elastography and splenic size in predicting PHLF.Ultrasound elastography reflects liver functional reserve,while splenic size provides additional predictive value.By integrating these factors with serological markers,we developed a comprehensive prediction model that effectively stratifies patient risk and supports personalized clinical decisions.This approach offers new insights into predicting PHLF.These methods not only assist clinicians in identifying high-risk patients earlier but also provide scientific support for personalized treatment strategies.Future research will aim to validate the model's accuracy with larger sample sizes,further enhancing the clinical application of these non-invasive indicators. 展开更多
关键词 Ultrasound elastography Splenic size Post-hepatectomy liver failure prediction model Risk stratification
下载PDF
Short-Term Photovoltaic Power Prediction Based onMulti-Stage Temporal Feature Learning
12
作者 Qiang Wang Hao Cheng +4 位作者 Wenrui Zhang Guangxi Li Fan Xu Dianhao Chen Haixiang Zang 《Energy Engineering》 2025年第2期747-764,共18页
Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challen... Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion of traditional energy sources.However,the fluctuations and intermittency of photovoltaic(PV)power pose challenges for its extensive incorporation into power grids.Thus,enhancing the precision of PV power prediction is particularly important.Although existing studies have made progress in short-term prediction,issues persist,particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud images and PV power data.These factors hinder improvements in PV power prediction performance.To overcome these challenges,this paper proposes a novel PV power prediction method based on multi-stage temporal feature learning.First,the improved LSTMand SA-ConvLSTMare employed to extract the temporal feature of PV power and the spatial-temporal feature of satellite cloud images,respectively.Subsequently,a novel hybrid attention mechanism is proposed to identify the interplay between the two modalities,enhancing the capacity to focus on the most relevant features.Finally,theTransformermodel is applied to further capture the short-termtemporal patterns and long-term dependencies within multi-modal feature information.The paper also compares the proposed method with various competitive methods.The experimental results demonstrate that the proposed method outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction. 展开更多
关键词 Photovoltaic power prediction satellite cloud image LSTM-Transformer attention mechanism
下载PDF
Predictive value of C-reactive protein,procalcitonin,and total bilirubin levels for pancreatic fistula after gastrectomy for gastric cancer
13
作者 Jing-Long Yuan Xuan Wen +1 位作者 Pan Xiong Li Pei 《World Journal of Gastrointestinal Surgery》 2025年第2期183-190,共8页
BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gast... BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gastrectomy;however,post-surgical pancreatic fistula remain a serious issue.These fistulas can lead to abdominal infections,anastomotic leakage,increased costs,and pain;thus,early diagnosis and prevention are crucial for a better prognosis.Currently,C-reactive protein(CRP),procalcitonin(PCT),and total bilirubin(TBil)levels are used to predict post-operative infections and anastomotic leakage.However,their predictive value for pancreatic fistula after radical gastrectomy for gastric cancer remains unclear.The present study was conducted to determine their predictive value.AIM To determine the predictive value of CRP,PCT,and TBil levels for pancreatic fistula after gastric cancer surgery.METHODS In total,158 patients who underwent radical gastrectomy for gastric cancer at our hospital between January 2019 and January 2023 were included.The patients were assigned to a pancreatic fistula group or a non-pancreatic fistula group.Multivariate logistic analysis was conducted to assess the factors influencing development of a fistula.Receiver operating characteristic(ROC)curves were used to determine the predictive value of serum CRP,PCT,and TBil levels on day 1 postsurgery.RESULTS On day 1 post-surgery,the CRP,PCT,and TBil levels were significantly higher in the pancreatic fistula group than in the non-pancreatic fistula group(P<0.05).A higher fistula grade was associated with higher levels of the indices.Univariate analysis revealed significant differences in the presence of diabetes,hyperlipidemia,pancreatic injury,splenectomy,and the biomarker levels(P<0.05).Logistic multivariate analysis identified diabetes,hyperlipidemia,pancreatic injury,CRP level,and PCT level as independent risk factors.ROC curves yielded predictive values for CRP,PCT,and TBil levels,with the PCT level having the highest area under the curve(AUC)of 0.80[95%confidence interval(CI):0.72-0.90].Combined indicators improved the predictive value,with an AUC of 0.86(95%CI:0.78-0.93).CONCLUSION Elevated CRP,PCT,and TBil levels predict risk of pancreatic fistula post-gastrectomy for gastric cancer. 展开更多
关键词 PROCALCITONIN C-reactive protein Total bilirubin Radical gastrectomy for gastric cancer Pancreatic fistula predictive value
下载PDF
Risk factors for biometry prediction error by Barrett Universal II intraocular lens formula in Chinese patients
14
作者 Xu-Hao Chen Ying Hong +3 位作者 Xiang-Han Ke Si-Jia Song Yu-Jie Cen Chun Zhang 《International Journal of Ophthalmology(English edition)》 2025年第1期74-78,共5页
AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Uni... AIM:To investigate the influence of postoperative intraocular lens(IOL)positions on the accuracy of cataract surgery and examine the predictive factors of postoperative biometry prediction errors using the Barrett Universal II(BUII)IOL formula for calculation.METHODS:The prospective study included patients who had undergone cataract surgery performed by a single surgeon from June 2020 to April 2022.The collected data included the best-corrected visual acuity(BCVA),corneal curvature,preoperative and postoperative central anterior chamber depths(ACD),axial length(AXL),IOL power,and refractive error.BUII formula was used to calculate the IOL power.The mean absolute error(MAE)was calculated,and all the participants were divided into two groups accordingly.Independent t-tests were applied to compare the variables between groups.Logistic regression analysis was used to analyze the influence of age,AXL,corneal curvature,and preoperative and postoperative ACD on MAE.RESULTS:A total of 261 patients were enrolled.The 243(93.1%)and 18(6.9%)had postoperative MAE<1 and>1 D,respectively.The number of females was higher in patients with MAE>1 D(χ^(2)=3.833,P=0.039).The postoperative BCVA(logMAR)of patients with MAE>1 D was significantly worse(t=-2.448;P=0.025).After adjusting for gender in the logistic model,the risk of postoperative refractive errors was higher in patients with a shallow postoperative anterior chamber[odds ratio=0.346;95% confidence interval(CI):0.164,0.730,P=0.005].CONCLUSION:Risk factors for biometry prediction error after cataract surgery include the patient’s sex and postoperative ACD.Patients with a shallow postoperative anterior chamber are prone to have refractive errors. 展开更多
关键词 intraocular lens power calculation GENDER anterior chamber depth biometry prediction error
下载PDF
Determinants of generalized anxiety and construction of a predictive model in patients with chronic obstructive pulmonary disease
15
作者 Yi-Pu Zhao Wei-Hua Liu Qun-Cheng Zhang 《World Journal of Psychiatry》 2025年第2期48-58,共11页
BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety d... BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff. 展开更多
关键词 Chronic obstructive pulmonary disease Generalized anxiety disorder predictive model Determinants analysis Forest plot
下载PDF
Innovative approaches in predicting outcomes for rectal neuroendocrine tumors
16
作者 Mahmoud Nassar Bahaaeldin Baraka Andrew H Talal 《World Journal of Gastroenterology》 2025年第6期126-131,共6页
Rectal neuroendocrine neoplasms pose significant challenges due to their varied presentations and prognoses.Traditional prognostic models,while useful,often fall short of accurately predicting clinical outcomes for th... Rectal neuroendocrine neoplasms pose significant challenges due to their varied presentations and prognoses.Traditional prognostic models,while useful,often fall short of accurately predicting clinical outcomes for these patients.This article discusses the development and implications of a novel prognostic tool,the GATIS score,which aims to enhance predictive accuracy and guide treatment strategies more effectively than current methods.Utilizing data from a large cohort and employing sophisticated statistical models,the GATIS score integrates clinical and pathological markers to provide a nuanced assessment of prognosis.We evaluate the potential of this score to transform clinical decision-making processes,its integration into current medical practices,and future directions for its develo-pment.The integration of genetic markers and other biomarkers could further refine its predictive power,highlighting the ongoing need for innovation in the management of rectal neuroendocrine neoplasms. 展开更多
关键词 Rectal neuroendocrine tumors GATIS score Tumor staging Rectal neuroendocrine neoplasms Survival prediction Prognostic assessment Biomarkers Neuroendocrine carcinoma
下载PDF
Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control
17
作者 Yuanxiang Luo Linshu Cai Nan Zhang 《Energy Engineering》 2025年第2期765-783,共19页
Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluct... Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability,and the system frequency stability is facing unprecedented challenges.In order to solve rapid frequency fluctuation caused by new energy units,this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit(DFPSU).Firstly,based on the model predictive control(MPC)theory,the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system;secondly,the proportional-differential control link is introduced to minimize the frequency deviation to further optimize the frequency modulation(FM)output of the DFPSU and inhibit the rapid fluctuation of the frequency;lastly,it is verified on theMatlab/Simulink simulation platform,and the results show that the model predictive control with proportional-differential control link can further release the FM potential of the DFPSU,increase the depth of its FM,effectively reduce the frequency deviation of the system and its rate of change,realize the optimization of the active output of the DFPSU and that of other units,and improve the frequency response capability of the system. 展开更多
关键词 Doubly-fed pumped storage unit model predictive control proportional-differential control link frequency regulation
下载PDF
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models
18
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 predictABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions
19
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
下载PDF
Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network
20
作者 Yongfeng Tai Xingyu Yan +3 位作者 Xiangyi Geng Lin Mu Mingshun Jiang Faye Zhang 《Structural Durability & Health Monitoring》 2025年第2期365-383,共19页
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler... The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life. 展开更多
关键词 Remaining useful life prediction rolling bearing health indicator construction multilayer perceptron bidirectional long short-term memory network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部