To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this pap...To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.展开更多
Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces i...Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.展开更多
An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surf...An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.展开更多
A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,esta...A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,established by the International Association of Classification Societies in 2007,were applied for ice loading calculations.An R-class propeller(a type of ice-class propeller)was utilized for subsequent investigations.The propeller modeling was simplified based on a conventional method,which expedited the model building process.The propeller performance was simulated using the computational fluid dynamics(CFD)method.The simulation results were validated by comparison with experimental data.Furthermore,the hydrodynamic pressure was transferred into a finite element analysis(FEA)module for strength assessment of ice-class propellers.According to URI3 rules,the ice loading was estimated based on different polar classes and working cases.Then,the FEA method was utilized to evaluate the propeller strength.The validation showed that the simulation results accorded with recent research results.Finally,an improved optimization method was developed to save the propeller constituent materials.The optimized propeller example had a minimum safety factor of 1.55,satisfying the safety factor requirement of≥1.5,and reduced the design volume to 88.2%of the original.展开更多
Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respec...Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respectively. The discrete line-spectrum noise and its standardized spectrum level scaling law, together with the total sound pressure level are analyzed. The non-cavitation noise predictions are completed by both the frequency domain method and the time domain method. As a fluctuated noise source, the time-dependent fluctuated pressure and normal velocity distribution on propeller blades are obtained by the unsteady Reynolds-averaged Navier-Stokes ( URANS ) simulation. Results show that the pressure coefficient distribution of three propellers on the 0.7R section is nearly superposed under the same advance ratio. The periodic thrust fluctuation of three propellers can exactly reflect the tonal components of the axial passing frequency (APF) and the blade passing frequency (BPF), and the fluctuation enhancement from the small to the middle propeller at the BPF is greater than that from the middle to the big one. By the two noise prediction methods, the increment of the total sound pressure level from the small to the big propeller differs by 2.49 dB. Following the standardized scaling law, the spectrum curves of the middle and big propellers are nearly the same while significantly differing from the small one. The increment of both the line-spectrum level and the total sound pressure increases with the increase in diameter. It is suggested that the model scale of the propeller should be as large as possible in engineering to reduce the prediction error of the empirical scalin~ law and weaken the scale effects.展开更多
文摘To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.
基金Funded Through the Norwegian Research Council Project No.194529
文摘Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.
基金supported by the marine research center of Amirkabir University of Technology
文摘An algorithm based on the Boundary Element Method(BEM)is presented for designing the High Skew Propeller(HSP)used in an Underwater Vehicle(UV).Since UVs operate under two different kinds of working conditions(i.e.surface and submerged conditions),the design of such a propeller is an unwieldy task.This is mainly due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different.Therefore,some factors are necessary for the design of the opti-mum propeller to utilize the power under the mentioned conditions.The design objectives of the optimum propeller are to obtain the highest possible thrust and efficiency with the minimum torque.For the current UV,the main dimensions of the propeller are pre-dicted based on the given required thrust and the defined operating conditions.These dimensions(number of blades,pitch,diameter,expanded area ratio,thickness and camber)are determined through iterative procedure.Because the propeller operates at the stern of the UV where the inflow velocity to the propeller is non-uniform,a 5-blade HSP is preferred for running the UV.Finally,the propel-ler is designed based on the numerical calculations to acquire the improved hydrodynamic efficiency.
基金The author would like to thank University of Tasmania and Newcastle University for their support。
文摘A systematic method was developed for ice-class propeller modeling,performance estimation,strength and integrity evaluation and optimization.To estimate the impact of sea ice on the propeller structure,URI3 rules,established by the International Association of Classification Societies in 2007,were applied for ice loading calculations.An R-class propeller(a type of ice-class propeller)was utilized for subsequent investigations.The propeller modeling was simplified based on a conventional method,which expedited the model building process.The propeller performance was simulated using the computational fluid dynamics(CFD)method.The simulation results were validated by comparison with experimental data.Furthermore,the hydrodynamic pressure was transferred into a finite element analysis(FEA)module for strength assessment of ice-class propellers.According to URI3 rules,the ice loading was estimated based on different polar classes and working cases.Then,the FEA method was utilized to evaluate the propeller strength.The validation showed that the simulation results accorded with recent research results.Finally,an improved optimization method was developed to save the propeller constituent materials.The optimized propeller example had a minimum safety factor of 1.55,satisfying the safety factor requirement of≥1.5,and reduced the design volume to 88.2%of the original.
基金The National Natural Science Foundation of China(No.51009144)
文摘Regarding the scale effects on propeller's noncavitation hydrodynamics and hydroacoustics, three similar 7bladed highly-skewed propellers in the wake flow are addressed with diameters of 250, 500 and 1 000 mm, respectively. The discrete line-spectrum noise and its standardized spectrum level scaling law, together with the total sound pressure level are analyzed. The non-cavitation noise predictions are completed by both the frequency domain method and the time domain method. As a fluctuated noise source, the time-dependent fluctuated pressure and normal velocity distribution on propeller blades are obtained by the unsteady Reynolds-averaged Navier-Stokes ( URANS ) simulation. Results show that the pressure coefficient distribution of three propellers on the 0.7R section is nearly superposed under the same advance ratio. The periodic thrust fluctuation of three propellers can exactly reflect the tonal components of the axial passing frequency (APF) and the blade passing frequency (BPF), and the fluctuation enhancement from the small to the middle propeller at the BPF is greater than that from the middle to the big one. By the two noise prediction methods, the increment of the total sound pressure level from the small to the big propeller differs by 2.49 dB. Following the standardized scaling law, the spectrum curves of the middle and big propellers are nearly the same while significantly differing from the small one. The increment of both the line-spectrum level and the total sound pressure increases with the increase in diameter. It is suggested that the model scale of the propeller should be as large as possible in engineering to reduce the prediction error of the empirical scalin~ law and weaken the scale effects.