Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), n...Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.展开更多
Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteris...Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteristics of the implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.展开更多
In this study, the performance against erosive wear of PVD TiN (titanium nitride) coating was evaluated using an erosion test rig similar to that described in the standard ASTM G76-95. This coating normally has variou...In this study, the performance against erosive wear of PVD TiN (titanium nitride) coating was evaluated using an erosion test rig similar to that described in the standard ASTM G76-95. This coating normally has various industrial applications such as tapping, drilling, dry machining and punching. Angular silicon carbide (SiC) was used as an abrasive particle with a grain size of 350-450 μm. Erosion tests were carried out using different incident angles, 30°, 45°, 60° and 90° with a particle velocity of 24 ± 2 m/s, an abrasive flow rate of 0.7 ± 0.5 g/min, and the test temperature was between 35°C and 40°C. The particle velocity and the abrasive flow rate were low in all of the tests to reduce the interaction between the incident and the rebounding particles in the system. The surfaces were examined with a scanning electron microscope (SEM) to characterize the erosive damage. The wear mechanisms identified were brittle fracture characterized by radial cracks on the surface by multiple impact and a few pits at 30°, while a few cracks and the formation of craters in random positions were observed at angles near or at 90°. Elliptical scars were observed at 30° and 45°, which are a characteristic feature when the specimens are impacted at low-incident angles (α ≤ 45°) whereas a roughly circular scar was seen at 60° and 90°. In addition, roughness variations were analyzed using atomic force microscopy (AFM), before and after the erosion tests, and the results exhibited an increase in the roughness as the TiN samples were impacted at angles near or at 90°.展开更多
With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced ...With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Crl2MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by microhardness, scratch and wear tests. The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Crl2MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Crl2MoV, the micropolishing action of the counterface dominates in surface engineered material.展开更多
Plasma-activated electron beam-physical vapor deposition(EB-PVD)was used for depositing nitride multilayer coatings in this work.Different from the conventional coating methods,the multilayers were obtained by manip...Plasma-activated electron beam-physical vapor deposition(EB-PVD)was used for depositing nitride multilayer coatings in this work.Different from the conventional coating methods,the multilayers were obtained by manipulating electron beam(EB)to jump between two different evaporation sources alternately with variable frequencies(jumping beam technology).The plasma activation was generated by a hollow cathode plasma unit.The deposition process was demonstrated by means of tailoring TiN/TiAlN multilayers with different modulation periods(M1:26.5 nm,M2:80.0 nm,M3:6.0 nm,M4:4.0 nm).The microstructure and hardness of the multilayer coatings were comparatively studied with TiN and TiAlN singlelayer coatings.The columnar structure of the coatings(TiN,TiAlN,M1,M2)is replaced by a glassy-like microstructure when the modulation period decreases to less than 10 nm(M3,M4).Simultaneously,superlattice growth occurs.With the decrease of modulation period,both the hardness and the plastic deformation resistance(H^3/E^2,H-hardness and E-elastic modulus)increase.M4coating exhibits the maximum hardness of(49.6±2.7)GPa and the maximum plastic deformation resistance of^0.74 GPa.展开更多
文摘Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.
基金supported partly by Science and Technology Engineering of Nantong(2004032)Nantong Institute of Technology(200347)
文摘Ti ion implantation was implanted into PVD-TiN films using a metal vapor vacuum arc (MEVVA) ion source with a low implantation dose and at a time-averaged ion beam current density of 25|O.A-cm’2. The wear characteristics of the implanted zone was measured and compared to the performance of unimplanted zone by a pin-on-disc apparatus and an optical interference microscope. The structure of the implanted zone and unimplanted zone was observed by X-ray photoelectron spectroscopy (XPS) and high voltage electron microscopy (HVEM). The wear mechanisms of the TiN film after ion implantation were discussed according to the results of XPS and HVEM.
文摘In this study, the performance against erosive wear of PVD TiN (titanium nitride) coating was evaluated using an erosion test rig similar to that described in the standard ASTM G76-95. This coating normally has various industrial applications such as tapping, drilling, dry machining and punching. Angular silicon carbide (SiC) was used as an abrasive particle with a grain size of 350-450 μm. Erosion tests were carried out using different incident angles, 30°, 45°, 60° and 90° with a particle velocity of 24 ± 2 m/s, an abrasive flow rate of 0.7 ± 0.5 g/min, and the test temperature was between 35°C and 40°C. The particle velocity and the abrasive flow rate were low in all of the tests to reduce the interaction between the incident and the rebounding particles in the system. The surfaces were examined with a scanning electron microscope (SEM) to characterize the erosive damage. The wear mechanisms identified were brittle fracture characterized by radial cracks on the surface by multiple impact and a few pits at 30°, while a few cracks and the formation of craters in random positions were observed at angles near or at 90°. Elliptical scars were observed at 30° and 45°, which are a characteristic feature when the specimens are impacted at low-incident angles (α ≤ 45°) whereas a roughly circular scar was seen at 60° and 90°. In addition, roughness variations were analyzed using atomic force microscopy (AFM), before and after the erosion tests, and the results exhibited an increase in the roughness as the TiN samples were impacted at angles near or at 90°.
文摘With the rapid development of the automobile industry in China, there is an ever-increasing demand for long-life cold working dies used for punching automobile components. However, the full potential of such advanced surface engineering technologies as PVD coatings and duplex surface treatments in cold work dies has not been realized. In the present study, Crl2MoV steel has been surface engineered by single PVD Ti/TiN coating and duplex treatment combining low temperature plasma nitriding (LTPN) with PVD Ti/TiN coatings. The properties of Ti/TiN coatings in terms of surface morphology, microhardness, load bearing capacity, bonding strength and wear resistance were evaluated by microhardness, scratch and wear tests. The experimental results show that PVD Ti/TiN coatings can significantly enhance the surface load bearing capacity (especially for duplex treatments) and wear resistance of Crl2MoV steel by more than one order of magnitude. This can be mainly attributed to the hard and well-adherent PVD Ti/TiN surface coatings and strong mechanical support of the LTPN sublayer. While two-body abrasive wear prevails for uncoated Crl2MoV, the micropolishing action of the counterface dominates in surface engineered material.
基金financially supported by the National Natural Science Foundations of China(Nos.51201005 and 51231001)
文摘Plasma-activated electron beam-physical vapor deposition(EB-PVD)was used for depositing nitride multilayer coatings in this work.Different from the conventional coating methods,the multilayers were obtained by manipulating electron beam(EB)to jump between two different evaporation sources alternately with variable frequencies(jumping beam technology).The plasma activation was generated by a hollow cathode plasma unit.The deposition process was demonstrated by means of tailoring TiN/TiAlN multilayers with different modulation periods(M1:26.5 nm,M2:80.0 nm,M3:6.0 nm,M4:4.0 nm).The microstructure and hardness of the multilayer coatings were comparatively studied with TiN and TiAlN singlelayer coatings.The columnar structure of the coatings(TiN,TiAlN,M1,M2)is replaced by a glassy-like microstructure when the modulation period decreases to less than 10 nm(M3,M4).Simultaneously,superlattice growth occurs.With the decrease of modulation period,both the hardness and the plastic deformation resistance(H^3/E^2,H-hardness and E-elastic modulus)increase.M4coating exhibits the maximum hardness of(49.6±2.7)GPa and the maximum plastic deformation resistance of^0.74 GPa.