期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ISVM的软测量建模及其在PX生产中的应用研究 被引量:1
1
作者 张英 苏宏业 褚健 《控制与决策》 EI CSCD 北大核心 2005年第10期1102-1106,共5页
针对软测量模型存在的失效问题,提出一种基于增量支持向量机的建模方法.随着时间的推移,每次在模型中增加一个样本进行增量学习的同时,采用启发式策略去掉工作集中一个老的样本,从而可以在软测量模型中不断增加能够代表新工况信息样本... 针对软测量模型存在的失效问题,提出一种基于增量支持向量机的建模方法.随着时间的推移,每次在模型中增加一个样本进行增量学习的同时,采用启发式策略去掉工作集中一个老的样本,从而可以在软测量模型中不断增加能够代表新工况信息样本的同时控制工作样本集的规模.将所提出的软测量建模方法用于二甲苯(PX)吸附分离过程纯度的预测,结果表明所提出的建模方法以及样本替换策略可以有效地增强软测量模型适应工况变化的能力,提高其预测的精度. 展开更多
关键词 支持向量机 增量学习 软测量 px吸附分离过程
下载PDF
Adaptive Soft-sensor Modeling Algorithm Based on FCMISVM and Its Application in PX Adsorption Separation Process 被引量:10
2
作者 傅永峰 苏宏业 +1 位作者 张英 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期746-751,共6页
To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (I... To overcome the problem that soft sensor models cannot be updated with the process changes, a soft sensor modeling algorithm based on hybrid fuzzy c-means (FCM) algorithm and incremental support vector machines (ISVM) is proposed. This hybrid algorithm FCMISVM includes three parts: samples clustering based on FCM algorithm, learning algorithm based on ISVM, and heuristic sample displacement method. In the training process, the training samples are first clustered by the FCM algorithm, and then by training each clustering with the SVM algorithm, a sub-model is built to each clustering. In the predicting process, when an incremental sample that represents new operation information is introduced in the model, the fuzzy membership function of the sample to each clustering is first computed by the FCM algorithm. Then, a corresponding SVM sub-model of the clustering with the largest fuzzy membership function is used to predict and perform incremental learning so the model can be updated on-line. An old sample chosen by heuristic sample displacement method is then discarded from the sub-model to control the size of the working set. The proposed method is applied to predict the p-xylene (PX) purity in the adsorption separation process. Simulation results indicate that the proposed method actually increases the model's adaptive abilities to various operation conditions and improves its generalization capability. 展开更多
关键词 soft sensor fuzzy c-means incremental support vector machines heuristic sample displacement method p-xylene purity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部