This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented...Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented by the Gram determinant,and then we give the large y asymptotics of the determinant and the rational solutions.Finally,the solution of the corresponding Riemann-Hilbert problem is obtained from the Darboux matrices.展开更多
With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process ...With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process from LHC Ⅱ to the reaction center. On the basis of this model, a set of rate equation was established. Analysis of its algebra solution led to a general picture of energy transfer process in LHC Ⅱ of higher plants and the strong interaction among pigment molecules in this process. Based on the spectra, kinetics and biological structural data providing some information of energy transfer path and energy dissipation mechanism, it has been found that energy transfer mainly happened between the pigments whose energy level was most closely adjacent, the loss of energy had a close relation to the process of energy transfer and tended to increase with the decrease of energy level. The protective mechanism of antenna system was also discussed.展开更多
In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other ...In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other types of nonlinear physical models,we study the nonlinear Schrodinger equation(NLSE)with the generalized PT-symmetric Scarf-Ⅱpotential,which is an important physical model in many fields of nonlinear physics.Firstly,we choose three different initial values and the same Dinchlet boundaiy conditions to solve the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential via the PINN deep learning method,and the obtained results are compared with ttose denved by the toditional numencal methods.Then,we mvestigate effect of two factors(optimization steps and activation functions)on the performance of the PINN deep learning method in the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential.Ultimately,the data-driven coefficient discovery of the generalized PT-symmetric Scarf-Ⅱpotential or the dispersion and nonlinear items of the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential can be approximately ascertained by using the PINN deep learning method.Our results may be meaningful for further investigation of the nonlinear Schrodmger equation with the generalized PT-symmetric Scarf-Ⅱpotential in the deep learning.展开更多
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金Project supported by the National Natural Science Foundation of China (Grant No.12101246)。
文摘Under the Flaschka-Newell Lax pair,the Darboux transformation for the Painlevé-Ⅱequation is constructed by the limiting technique.With the aid of the Darboux transformation,the rational solutions are represented by the Gram determinant,and then we give the large y asymptotics of the determinant and the rational solutions.Finally,the solution of the corresponding Riemann-Hilbert problem is obtained from the Darboux matrices.
文摘With reference to the recent achivements about the structure, spectra and kinetics of light_harvesting complex (LHCⅡ) in PSⅡ of higher plants, a four_level model was provided to simulate the energy transfer process from LHC Ⅱ to the reaction center. On the basis of this model, a set of rate equation was established. Analysis of its algebra solution led to a general picture of energy transfer process in LHC Ⅱ of higher plants and the strong interaction among pigment molecules in this process. Based on the spectra, kinetics and biological structural data providing some information of energy transfer path and energy dissipation mechanism, it has been found that energy transfer mainly happened between the pigments whose energy level was most closely adjacent, the loss of energy had a close relation to the process of energy transfer and tended to increase with the decrease of energy level. The protective mechanism of antenna system was also discussed.
基金supported by the National Natural Science Foundation of China under Grant Nos.11775121,11435005the K.C.Wong Magna Fund of Ningbo University。
文摘In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other types of nonlinear physical models,we study the nonlinear Schrodinger equation(NLSE)with the generalized PT-symmetric Scarf-Ⅱpotential,which is an important physical model in many fields of nonlinear physics.Firstly,we choose three different initial values and the same Dinchlet boundaiy conditions to solve the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential via the PINN deep learning method,and the obtained results are compared with ttose denved by the toditional numencal methods.Then,we mvestigate effect of two factors(optimization steps and activation functions)on the performance of the PINN deep learning method in the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential.Ultimately,the data-driven coefficient discovery of the generalized PT-symmetric Scarf-Ⅱpotential or the dispersion and nonlinear items of the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential can be approximately ascertained by using the PINN deep learning method.Our results may be meaningful for further investigation of the nonlinear Schrodmger equation with the generalized PT-symmetric Scarf-Ⅱpotential in the deep learning.