The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoi...The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary event.The authors think that the North China Craton and the Yangtze Craton were possibly in different tectonic locations of the same continental block during the Proterozoic.展开更多
The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open quest...The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open question when modern plate tectonics started on Earth and how it has influenced the carbon cycle through time.In the Paleoproterozoic,intense weathering in a highly CO_(2)and CH_(4)rich atmosphere caused more nutritional elements to be carried into the ocean.Terrestrial input boosted high biological productivity,deposition of sediments and the formation of an altered oceanic crust,which may have promoted an increase in the oxygen content.Sediment lubrication and a decrease in mantle potential temperature made cold and deep subduction possible,which carried more carbon into the deep mantle.Carbon can be stored in the mantle as diamond and carbonated mantle rocks,being released by arc and mid-ocean ridge outgassing at widely different times.From the Paleoproterozoic through the Neoproterozoic to the Phanerozoic,the carbon cycle has promoted the evolution of a habitable Earth.展开更多
Results of a geochemical and geochronological study of the Paleoproterozoic rock assemblage in the Haisyn block of the Ros-Tikych Domain of the Ukrainian Shield are reported.Within the block,the Haisyn Complex compris...Results of a geochemical and geochronological study of the Paleoproterozoic rock assemblage in the Haisyn block of the Ros-Tikych Domain of the Ukrainian Shield are reported.Within the block,the Haisyn Complex comprises granitoids,including pyroxene-bearing diorites,quartz diorites,granodiorites,amphibole-biotite and biotite granites,and aplite and pegmatite granites.Monazite U-Pb isotope age of charnockitic syenite belonging to the Haisyn Complex was defined at 2027±6 Ma.This age coeval with the time of granulite facies metamorphism and emplacement of numerous granitic intrusions in the area.The Sm–Nd apatite isochron yielded an age of 2100±150 Ma.TheεNd isochron value of-5 indicates a long crustal residence time of the crustal protolith.Geochemical data do not indicate any enrichment of the studied rocks in relation to the Eoarchean and Neoarchean charnockites developed in the same area.So,if the model of partial melting of the older crustal protolith is involved then the degree of melting must be quite high.However,deep negative anomalies of Sr,Eu,Zr,and Ti indicate that plagioclase,zircon,and Fe–Ti oxides probably remained unmelted in the source.The Haisyn block was buried in the lower crust at high temperature and pressure conditions in the Paleoproterozoic time.Such a situation resulted in partial melting of the existing crust and formation of melts,containing undigested zircon and bearing ancient Nd isotope signature.展开更多
The Alto MoxotóTerrane of the Borborema Province presents a wide exposure of Paleoproterozoic crust,but unlike other continental blocks of South America,its orogenic history is strongly obliterated by late Neopro...The Alto MoxotóTerrane of the Borborema Province presents a wide exposure of Paleoproterozoic crust,but unlike other continental blocks of South America,its orogenic history is strongly obliterated by late Neoproterozoic deformation.New isotopic and geochemical studies were conducted in mafic-ultramafic(Fazenda Carmo Suite)and granitic-gneissic rocks(Riacho do Navio Suite)within the terrane.The former present zircon U-Pb crystallization ages at ca.2.13 Ga,whereas Sm-Nd data suggests a juvenile origin via melting of early Paleoproterozoic to Archean peridotitic sources.Geochemical data for these rocks are compatible with tholeiitic magmas with some degree of crustal contamination and trace element distribution points to a continental-arc related setting interpreted as remnants of the early stages of subduction.In contrast,the Riacho do Navio Suite was emplaced at ca.2.08 Ga and has highly negativeεNd(t)values indicating crustal reworking.The suite displays calc-alkali to alkali-calcic and ferroan geochemical signatures compatible with Cordilleran magmas.In addition,trace-element distribution as well as discriminant diagrams suggest that the precursor magmas were generated during the later stages of a continental arc or in a syn-collisional setting.Based on our results,we suggest that the studied units might represent missing pieces of a Paleoproterozoic accretionary orogen that formed the crustal framework of the Alto MoxotóTerrane,and that this represents a block associated with assembly of the Nuna/Columbia supercontinent,which is now largely hidden within the Neoproterozoic orogenic belts of West Gondwana.展开更多
This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton...This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (-1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW-SEE direction to the southern margin of the North China Craton.展开更多
The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia...The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong’er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong’er Group.The Xiong’er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong’er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zirconεHft values of-17.4 to 8.8,whole-rock initial 87Sr/86Sr values of 0.7023 to 0.7177 andεNd(t)values of-10.9 to 6.4.and Pb isotopes(206Pb/204Pb=14.366-16.431,207Pb/204Pb=15.106-15.371,208Pb/204Pb=32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong’er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong’er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.展开更多
Paleoproterozoic potassic granitoids in the southern Sushui Complex from the Zhongtiao Mountains yielded SHRIMP zircon U-Pb ages of 1968-1944 Ma. Lithologically, the potassic granitoid series consists chiefly of monzo...Paleoproterozoic potassic granitoids in the southern Sushui Complex from the Zhongtiao Mountains yielded SHRIMP zircon U-Pb ages of 1968-1944 Ma. Lithologically, the potassic granitoid series consists chiefly of monzodiorite, quartz monzonite and syenogranite. Their trace elements and Sm-Nd isotope characteristics indicate that they were derived from partial melting of Archean TTG rocks in an overthickened continental crust. Petrogenesis of this potassic granitoid series implies a collisional environment within the Trans-North China Orogen in the Paleoproterozoic, which supports a tectonic model of Eastern and Western Continental Blocks being amalgamated in the Paleoproterozoic.展开更多
The Paleoproterozoic Liiliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithologic...The Paleoproterozoic Liiliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithological assemblages in the southern part of the PLMC, Guandishan granitoids consist of early gneissic tonalities, granodiorites and gneissic monzogranites, and younger gneissic to massive monzogranites. Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series; the early gneissic monzogranites are transitional from high-K calc-alkaline to the shoshonite series; the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series, and all rocks are characterized by right- declined REE patterns and negative Nb, Ta, Sr, P, and Ti anomalies in the primitive mantle normalized spidergrams. SHRIMP zircon U-Pb isotopic dating reveals that the early gneissic tonalities and granodiorites formed at -2.17 Ga, the early gneissic monzogranites at -2.06 Ga, and the younger gneissic to massive monzogranites at -1.84 Ga. Sm-Nd isotopic data show that the early gneissic tonalities and granodiorites have eNd(t) values of +0.48 to -3.19 with Nd-depleted mantle model ages (TDM) of 2.76--2.47 Ga, and early gneissic monzogranites have eNd(t) values of -0.53 to -2.51 with TDM of 2.61--2.43 Ga, and the younger gneissic monzogranites have eNd(t) values of -6.41 to -2.78 with a TDM of 2.69--2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities, granodiorites, and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks, respectively, in a continental arc setting. The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust. Combined with previously regional data, we suggest that the Paleoproterozoic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geological signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction, through collisional orogenesis, to post-orogenic extension and uplift.展开更多
Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902 ...Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902 ± 12 Ma, 1852 ± 9 Ma and 1917 ± 48 Ma. Lead isotopic analyses of marble from the Xiquegou Member of the Qingchenzi orefield yield a Pb-Pb isochron age of 1844 ± 27 Ma. 40Ar-39Ar quick neutron activation dating of phlogopites and microclines coexisting with ore minerals in the Wengquangou boron (iron) and Zhuanmiao boron deposits shows that: (1) the phlogopite from the Wengquangou has a plateau age of 1923 ± 1.5 Ma and an isochron age of 1924 ± 2.5 Ma; (2) the microcline from the Wengquangou has the plateau age of 1407 ± 5.4 Ma and 220 ± 12 Ma and an isochron age of 1403 ± 19 Ma; (3) the phlogopites from the Zhuanmiao yield a plateau age 1918 ± 1.3 Ma and an isochron age of 1918 ± 2.9 Ma; (4) the microclines from the Zhuanmiao yield the plateau age of 1420 ± 16 Ma and 250 ± 8 Ma and an isochron age of 1425 ± 19 Ma and 269 ± 16 Ma. These ages indicate that the eastern Liaoning area happened around 1900 Ma, an important tectonomagmatic event, which is consistent with the worldwide Mid-Proterozoic tectonomagmatic event. During this period, the Proterozoic Liaohe Group was folded and underwent strong normal metamorphism, and the (hydrothermal) sedimentary boron deposits (or source beds) formed earlier were strongly superimposed by mineralization, resulting in enrichment of boron; later regional geological processes made little contribution to the formation of the boron deposits. Lead isotopic components show that the U-Pb and Th-Pb isotopic system reached homogenization in the ores whereas only the U-Pb isotopic system reached homogenization in the marble from the Xiquegou district, which indicates that the boron deposits superimposed in the studied area endured a relatively strong process of hydrothermal migmatization during the end phase of early Proterozoic metamorphism.展开更多
The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1...The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.展开更多
Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1...Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.展开更多
Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field dat...Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field data,petrography,and first comprehensible wholerock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region.The studied rock samples are characterized by pseudomorphic textures,including mesh microstructure formed by serpentine intergrowths with cores of olivine,bastites after pyroxene.Antigorite constitutes almost the whole bulk of the rocks and is associated(to the less amount)with tremolite,talc,spinel,and magnetite.Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types.Type 1 has high MgO(>40 wt%)content and high Mg#values(88.80)whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg#values(<40 and 82.88 wt%,respectively).Both types have low Al/Si and high Mg/Si ratios than the primitive mantle,reflecting a refractory abyssal mantle peridotite protolith.Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization.Bulk rock high-Ti content is similar to the values of subducted serpentinites(>50 ppm).This similarity,associated with the high Cr contents,spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subductionrelated environment.The U-shaped chondrite normalizedREE patterns of serpentinized peridotites,coupled with similar enrichments in LREE and HFSE,suggest the refertilized nature due to melt/rock interaction prior to serpentinization.Based on the results,we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subductionrelated environment,especially in Supra Subduction Zone setting.These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the Sao Francisco craton in Brazil.展开更多
Paleoproterozoic granitoids are an important constituent of the Jiao-Liao-Ji Belt(JLJB). The spatial-temporal distribution and types of Paleoproterozoic granitoids are closely related to the evolution of the JLJB. In ...Paleoproterozoic granitoids are an important constituent of the Jiao-Liao-Ji Belt(JLJB). The spatial-temporal distribution and types of Paleoproterozoic granitoids are closely related to the evolution of the JLJB. In this paper, we review the field occurrence, petrography, geochronology, and geochemistry of Paleoproterozoic granitoids on Liaodong Peninsula, northeast China. The Paleoproterozoic granitoids can be divided into pre-tectonic(~2.15 Ga;peak age=2.18 Ga) and post-tectonic(~1.85 Ga) granitoids. The pre-tectonic granitoids are magnetite and hornblende-biotite monzogranites and granodiorites. Pre-tectonic monzogranites are widespread in the JLJB and have A2-type affinities. In contrast, pretectonic granodiorites are only present in the Simenzi area and have adakitic affinities. The post-tectonic granitoids consist of porphyritic monzogranite, syenite, diorite, granodiorite, quartz monzonite, monzogranite, and granitic pegmatite, which are adakitic rocks and I-, S-, and A2-type granitoids. The assemblage of pre-tectonic A2-type granitoids and adakitic rocks indicates the initial tectonic setting of the JLJB was a continental back-arc basin. The assemblage of post-tectonic adakitic rocks and I-, S-, and A2-type granitoids indicates a post-collisional setting. The 2.20-2.15 Ga A2-type granitoids and adakitic rocks were associated with the initial stage of back-arc extension, and the peak of back-arc extension is inferred from the subsequent(2.15-2.10 Ga) mafic intrusive activity. The ~1.90 Ga adakitic rocks mark the beginning of the postcollisional stage, which was followed by the intrusion of low-temperature S-and I-type granitoids. High-to low-pressure granitoids(S-type) were generated during the peak of post-collisional lithospheric delamination and asthenospheric upwelling. The emplacement of later granitic pegmatites occurred during the waning of the orogeny.展开更多
The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
Jebba area southwestern Nigeria forms part of the Nigerian basement complex which lies in the Neoproterozoic PanAfrican mobile belt. It is underlain by several lithological units among which is a polydeformed granitic...Jebba area southwestern Nigeria forms part of the Nigerian basement complex which lies in the Neoproterozoic PanAfrican mobile belt. It is underlain by several lithological units among which is a polydeformed granitic gneiss. This rock has been dated by LA-ICP-MS yielding a concordant U-Pb zircon age of 2207 ± 20 Ma indicating the crystallization age of the granite protolith. This early Rhyacian age and its affinity with within-plate granites indicates emplacement during crustal extension and rifting presceding the main phase of the Eburnean orogeny. The strong, early, shear fabric, S1, in the rock is interpreted to be also of Paleoproterozoic age i.e. imprinted during the Eburnean orogeny. The Jebba granitic gneiss is thus correlatable with the widely abundant Paleoproterozoic granitic magmatism now represented by many orthogneisses and documented in other parts of southwestern Nigeria, the West African craton, the Borborema Province, the Gurupi Belt, Sao Luis craton and Sao Francisco craton in Brazil.展开更多
The western part of the Kedougou Kenieba Inlier is located in the West African Craton. It consists of paleoproterozoic NE-trending elongate belts (subprovinces) of metavolcanic and granitic rocks that alternate with m...The western part of the Kedougou Kenieba Inlier is located in the West African Craton. It consists of paleoproterozoic NE-trending elongate belts (subprovinces) of metavolcanic and granitic rocks that alternate with metasedimentary belts. Major linear fault such as the MTZ which also approximate a north-easterly trend form the eastern boundaries. The field observations and geophysics analyses were completed by a microscopic study. Based on these data we define across this region four lithostructural domains from east to west. The western domain is structurally complex. The rocks of this domain have been subjected to a complex history of polyphase deformation and metamorphism. The structural analyse allow us to distinguished three deformation events. The deformation results in the formation of D1 thrust tectonic and D2 and D3 transcurrent tectonic. The structural evolution of the Mako Belt is characterized by deformation dominated by the intrusion of large TTG batholiths (D1) followed by basins formation and transpression accommodating oblique convergence and collision (D2 and D3). The change from thrusting (D1 deformation to transcurrent motion (D2 and D3) is recorded in the marginal basin of the central domain and in Tinkoto pull apart basin. The timing of these basins indicates a diachronous evolution. Deformation styles within the basin are compatible with a dextral transpression which terminated at ca 2090 Ma. Small extensional basins formed over the rocks of the Mako Belt are filled with continental detrital sedimentary rocks that show weak foliation and active felsic volcanism. We suggest that the sinistral transpressive tectonic associated with oblique subduction may have generated the pull-apart basin and subaqueous volcanism. In part these features are now related to terrain accretion, thrusting and strike slip movement during oblique convergence. The inversion of the large scale structural evolution from thrusting to strike slip is common to modern orogenies.展开更多
Ophiolites represent fragments of ancient oceanic lithosphere,tectonically incorporated into continental margins during plate subduction or remained in the subduction–collisional orogenic belt.They provide
Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic ...Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS) of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite- slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic-Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1) the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2) the older deformation and metamorphism relate to a Pacific type accretionary orogen which affected the northern margin of greater India. Better understanding of geodynamic evolution of the northern margin of India in the Paleoproterozoic has additional bearing on more refined model of reconstruction of Colllrnhia.展开更多
The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.Thi...The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.This study reports new zircon data obtained from Chaillu massif and N'goutou complex,which constrain the protolith age of the basement orthogneisses and the igneous age of an intrusive granite,respectively.Most zircons from the orthogneisses are blue and exhibit oscillatory zoning in cathode-luminescence images.Zircons with lower common lead abundances tend to be distributed close to the concordia curve.Two age clusters around 2860 Ma and 2910 Ma are found in zircons plotted on the concordia curve.Based on the Th/U ratios of zircons,these ages correspond to the protolith ages of the orthogneisses,and the zircons are not metamorphic in origin.Syenites and granites were collected from the N'goutou complex that intrudes into the FA and FB units of the Francevillian Group.The granitoids exhibit chemical composition of A-type granite affinity.Half of zircons separated from the granite are non-luminous,and the remaining half exhibit obscure internal textures under cathode-luminescence observation.All zircon grains contain significant amounts of common lead;the lead isotopic variability is probably attributed to the mixing of two components in the zircons.The zircon radiogenic ^(207)Pb/^(206)Pb ratio is 0.13707 ± 0.0010.corresponding to a ^(207)Pb/^(206)Pb age of 2191 ± 13 Ma.This constrains the minimum depositional age of the FA and FB units.Furthermore,the FB unit consists of manganese-rich carbonate rocks and organic carbon-rich black shales with macroscopic fossils.Based on our age constraints,these organisms appeared in the study area just after the last Paleoproterozoic Snowball Earth event,in concert with global scale oxidation event encompassing the Snowball Earth.展开更多
The late Paleoproterozoic Dagushi Formation comprises a fluvial-lacustrine succession and represents the initial fill of the Xiong'er Basin in the southern North China Craton.Employing integrated outcrop surveys a...The late Paleoproterozoic Dagushi Formation comprises a fluvial-lacustrine succession and represents the initial fill of the Xiong'er Basin in the southern North China Craton.Employing integrated outcrop surveys and detrital zircon UPb-Hf dating,this study examines the provenance and depositional setting of the Dagushi Formation.Five major depositional facies,including braided channel,distributary channel,subaqueous stream/mouth bar,pro-delta and shallow lake,were identified,based on lithofacies and associations.They were interpreted as representing a braided river deltalacustrine system.The ages of the last metamorphic event of the basement,covering volcanics and the youngest zircon together constrain a depositional age of ca.1.79 Ga for the Dagushi Formation.Zircon age distributions reveal a provenance change from ca.2.7–2.5 Ga rocks in the lower part,to ca.2.3–1.9 Ga sources in the middle-upper part of the Dagushi Formation.Considering the vertical sedimentology,this provenance change could be induced by the rising water-level caused by a tectonic subsidence.The ca.2.7–2.5 Ga zircons are suggested to be locally sourced from the late Neoarchean–Paleoproterozoic metamorphic basement.The northeast Zhongtiao Mts area(current co-ordinates)is supposed to have appeared as a paleo-uplift and served as a source area for the Paleoproterozoic grains.The Dagushi Formation records an early‘underfilled'stage of the Xiong'er Rift.展开更多
基金financially supported by the project entitled 1∶50000 Regional Geological Survey of Samaki,Yinmin,Guicheng,and Shugu Sheets in Yunnan Province(D201905)organized by the Land and Resources Department of Yunnan ProvinceTraining Object Project of technological innovation talents in Yunnan Province(202205AD160073)+2 种基金the project entitled“1∶50000 Regional Geological Survey of Dazhuang,Fabiao,Ditu,and Dianzhong Sheets in Yunnan Province”(S53A00722001048-007)“Joint Foundation Project between Yunnan Science and Technology Department and Yunnan University”(CY21624103)the project entitled“Area Summary and Service Product Development of Regional Geological Surveys in Yunnan Province”initiated by the China Geological Survey(121201102000150012-02)。
文摘The Lomagundi-Jatuli Event(LJE)refers to the significant positive carbon isotope excursion in seawater constituents that occurred immediately after the increase in atmospheric oxygen content during the Paleoproterozoic(2.22-2.06 Ga).Theδ^(13)C values of 46 dolostone samples collected from the Paleoproterozoic Yongjingshao Formation varied in the range of 0.05‰-4.95‰(V-PDB;maximum:4.95‰)in this study,which may be related to the multicellular eukaryotes in the Liangshan Formation in the Yimen Group.They are much higher than theδ^(13)C values of marine carbonates(-1.16‰on average).Theδ^(13)C values of other formations in the Paleoproterozoic Yimen Group are negative.The notable positive carbon isotope anomalies of the Yongjingshao Formation indicate the response to the LJE at the southwestern margin of the Yangtze Block,which is reported for the first time.Furthermore,they are comparable to theδ^(13)C values of carbonates in the Dashiling Formation of the Hutuo Group in the Wutaishan area in the North China Craton,the Wuzhiling Formation of the Songshan Group in the Xiong'er area,Henan Province,and the Dashiqiao Formation of the Liaohe Group in the Guanmenshan area,Liaoning Province.Therefore,it can be further concluded that the LJE is a global event.This study reveals that LJE occurred in Central Yunnan at 2.15-2.10 Ga,lasting for about 50 Ma.The macro-columnar,bean-shaped,and microfilament fossils and reticular ultramicrofossils of multicellular eukaryotes in this period were discovered in the Liangshan Formation of the Yimen Group.They are the direct cause for the LJE and are also the oldest paleontological fossils ever found.The major events successively occurring in the early stage of the Earth include the Great Oxygenation Event(first occurrence),the global Superiortype banded iron formations(BIFs),the Huronian glaciation,the Great Oxygenation Event(second occurrence),the explosion of multicellular eukaryotes,the positive carbon isotope excursion,and the global anoxic and selenium-rich sedimentary event.The authors think that the North China Craton and the Yangtze Craton were possibly in different tectonic locations of the same continental block during the Proterozoic.
基金funded by the National Key Research and Development Program of China(Grant No.2019YFA0708501)。
文摘The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open question when modern plate tectonics started on Earth and how it has influenced the carbon cycle through time.In the Paleoproterozoic,intense weathering in a highly CO_(2)and CH_(4)rich atmosphere caused more nutritional elements to be carried into the ocean.Terrestrial input boosted high biological productivity,deposition of sediments and the formation of an altered oceanic crust,which may have promoted an increase in the oxygen content.Sediment lubrication and a decrease in mantle potential temperature made cold and deep subduction possible,which carried more carbon into the deep mantle.Carbon can be stored in the mantle as diamond and carbonated mantle rocks,being released by arc and mid-ocean ridge outgassing at widely different times.From the Paleoproterozoic through the Neoproterozoic to the Phanerozoic,the carbon cycle has promoted the evolution of a habitable Earth.
文摘Results of a geochemical and geochronological study of the Paleoproterozoic rock assemblage in the Haisyn block of the Ros-Tikych Domain of the Ukrainian Shield are reported.Within the block,the Haisyn Complex comprises granitoids,including pyroxene-bearing diorites,quartz diorites,granodiorites,amphibole-biotite and biotite granites,and aplite and pegmatite granites.Monazite U-Pb isotope age of charnockitic syenite belonging to the Haisyn Complex was defined at 2027±6 Ma.This age coeval with the time of granulite facies metamorphism and emplacement of numerous granitic intrusions in the area.The Sm–Nd apatite isochron yielded an age of 2100±150 Ma.TheεNd isochron value of-5 indicates a long crustal residence time of the crustal protolith.Geochemical data do not indicate any enrichment of the studied rocks in relation to the Eoarchean and Neoarchean charnockites developed in the same area.So,if the model of partial melting of the older crustal protolith is involved then the degree of melting must be quite high.However,deep negative anomalies of Sr,Eu,Zr,and Ti indicate that plagioclase,zircon,and Fe–Ti oxides probably remained unmelted in the source.The Haisyn block was buried in the lower crust at high temperature and pressure conditions in the Paleoproterozoic time.Such a situation resulted in partial melting of the existing crust and formation of melts,containing undigested zircon and bearing ancient Nd isotope signature.
基金support from Australian Research Council grant FL160100168supported by the National Institute of Science and Technology for Tectonic Studies(INCT)of Brazil。
文摘The Alto MoxotóTerrane of the Borborema Province presents a wide exposure of Paleoproterozoic crust,but unlike other continental blocks of South America,its orogenic history is strongly obliterated by late Neoproterozoic deformation.New isotopic and geochemical studies were conducted in mafic-ultramafic(Fazenda Carmo Suite)and granitic-gneissic rocks(Riacho do Navio Suite)within the terrane.The former present zircon U-Pb crystallization ages at ca.2.13 Ga,whereas Sm-Nd data suggests a juvenile origin via melting of early Paleoproterozoic to Archean peridotitic sources.Geochemical data for these rocks are compatible with tholeiitic magmas with some degree of crustal contamination and trace element distribution points to a continental-arc related setting interpreted as remnants of the early stages of subduction.In contrast,the Riacho do Navio Suite was emplaced at ca.2.08 Ga and has highly negativeεNd(t)values indicating crustal reworking.The suite displays calc-alkali to alkali-calcic and ferroan geochemical signatures compatible with Cordilleran magmas.In addition,trace-element distribution as well as discriminant diagrams suggest that the precursor magmas were generated during the later stages of a continental arc or in a syn-collisional setting.Based on our results,we suggest that the studied units might represent missing pieces of a Paleoproterozoic accretionary orogen that formed the crustal framework of the Alto MoxotóTerrane,and that this represents a block associated with assembly of the Nuna/Columbia supercontinent,which is now largely hidden within the Neoproterozoic orogenic belts of West Gondwana.
基金supported by the Ministry of Land and Resources of the Peoples’ Republic of China (1212010711815, 1212010811033) and the Beijing SHRIMP Center
文摘This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (-1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW-SEE direction to the southern margin of the North China Craton.
基金supported by the National Natural Science Foundation of China(Grant No.41872080)the National Basic Research Program of China(Grant No.2015CB452603)+1 种基金the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Beijing)(Grant No.MSFGPMR201804)and the Fundamental Research Funds for the Central Universities of China(Grant Nos.2652016077,2652017223)
文摘The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong’er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong’er Group.The Xiong’er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong’er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zirconεHft values of-17.4 to 8.8,whole-rock initial 87Sr/86Sr values of 0.7023 to 0.7177 andεNd(t)values of-10.9 to 6.4.and Pb isotopes(206Pb/204Pb=14.366-16.431,207Pb/204Pb=15.106-15.371,208Pb/204Pb=32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong’er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong’er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.
基金This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 40412012035 and 40511140503).
文摘Paleoproterozoic potassic granitoids in the southern Sushui Complex from the Zhongtiao Mountains yielded SHRIMP zircon U-Pb ages of 1968-1944 Ma. Lithologically, the potassic granitoid series consists chiefly of monzodiorite, quartz monzonite and syenogranite. Their trace elements and Sm-Nd isotope characteristics indicate that they were derived from partial melting of Archean TTG rocks in an overthickened continental crust. Petrogenesis of this potassic granitoid series implies a collisional environment within the Trans-North China Orogen in the Paleoproterozoic, which supports a tectonic model of Eastern and Western Continental Blocks being amalgamated in the Paleoproterozoic.
基金support forthis study was provided by the National Natural ScienceFoundation of China(No.:40821002,40872120,40420120135,40472096,and 40472118)
文摘The Paleoproterozoic Liiliang Metamorphic Complex (PLMC) is situated in the middle segment of the western margin of the Trans-North China Orogen (TNCO), North China Craton (NCC). As the most important lithological assemblages in the southern part of the PLMC, Guandishan granitoids consist of early gneissic tonalities, granodiorites and gneissic monzogranites, and younger gneissic to massive monzogranites. Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series; the early gneissic monzogranites are transitional from high-K calc-alkaline to the shoshonite series; the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series, and all rocks are characterized by right- declined REE patterns and negative Nb, Ta, Sr, P, and Ti anomalies in the primitive mantle normalized spidergrams. SHRIMP zircon U-Pb isotopic dating reveals that the early gneissic tonalities and granodiorites formed at -2.17 Ga, the early gneissic monzogranites at -2.06 Ga, and the younger gneissic to massive monzogranites at -1.84 Ga. Sm-Nd isotopic data show that the early gneissic tonalities and granodiorites have eNd(t) values of +0.48 to -3.19 with Nd-depleted mantle model ages (TDM) of 2.76--2.47 Ga, and early gneissic monzogranites have eNd(t) values of -0.53 to -2.51 with TDM of 2.61--2.43 Ga, and the younger gneissic monzogranites have eNd(t) values of -6.41 to -2.78 with a TDM of 2.69--2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities, granodiorites, and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks, respectively, in a continental arc setting. The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust. Combined with previously regional data, we suggest that the Paleoproterozoic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best geological signature for the complete spectrum of Paleoproterozoic geodynamic processes in the Trans-North China Orogen from oceanic subduction, through collisional orogenesis, to post-orogenic extension and uplift.
基金supported by the National 973 Project of China(G1999043201)
文摘Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902 ± 12 Ma, 1852 ± 9 Ma and 1917 ± 48 Ma. Lead isotopic analyses of marble from the Xiquegou Member of the Qingchenzi orefield yield a Pb-Pb isochron age of 1844 ± 27 Ma. 40Ar-39Ar quick neutron activation dating of phlogopites and microclines coexisting with ore minerals in the Wengquangou boron (iron) and Zhuanmiao boron deposits shows that: (1) the phlogopite from the Wengquangou has a plateau age of 1923 ± 1.5 Ma and an isochron age of 1924 ± 2.5 Ma; (2) the microcline from the Wengquangou has the plateau age of 1407 ± 5.4 Ma and 220 ± 12 Ma and an isochron age of 1403 ± 19 Ma; (3) the phlogopites from the Zhuanmiao yield a plateau age 1918 ± 1.3 Ma and an isochron age of 1918 ± 2.9 Ma; (4) the microclines from the Zhuanmiao yield the plateau age of 1420 ± 16 Ma and 250 ± 8 Ma and an isochron age of 1425 ± 19 Ma and 269 ± 16 Ma. These ages indicate that the eastern Liaoning area happened around 1900 Ma, an important tectonomagmatic event, which is consistent with the worldwide Mid-Proterozoic tectonomagmatic event. During this period, the Proterozoic Liaohe Group was folded and underwent strong normal metamorphism, and the (hydrothermal) sedimentary boron deposits (or source beds) formed earlier were strongly superimposed by mineralization, resulting in enrichment of boron; later regional geological processes made little contribution to the formation of the boron deposits. Lead isotopic components show that the U-Pb and Th-Pb isotopic system reached homogenization in the ores whereas only the U-Pb isotopic system reached homogenization in the marble from the Xiquegou district, which indicates that the boron deposits superimposed in the studied area endured a relatively strong process of hydrothermal migmatization during the end phase of early Proterozoic metamorphism.
基金This study is financially supported by the National Natural Science Foundation of China (Grant Nos. 40412012035, 40511140503, 40472096, 40502009 and 40472118).
文摘The Guandishan granitoids consist mainly of various granitoid intrusions with different scales, including the Huijiazhuang intrusion, Shizhuang intrusion and Hengjian intrusion, which were formed between 1906 Ma and 1848 Ma. On the basis of geological and petrological characteristics, these granitoids can be classified into two groups: the earlier gneissic granodiorites and monzogranites, and the later massive leuco-monzogranites. Their geochemical and Nd isotopic features indicate that they could be derived from complicated partial melting of supracrustal rocks with an affinity of continental arc materials, such as sandy shale and pelite, and with garnet, pyroxene, hornblende and plagioclase as residual phases. Biotite, feldspar and other minerals were most likely fractionated during the magma evolution. Their source may have an affinity with continental arcs, and the granitoids could be derived from the main syn-collisional to late-orogenic tectonic environment, which may be related to the final amalgamation between the Eastern and Western continental blocks in the North China Craton.
基金financially supported by the NSFC(grant no.41430207, 41602340)China Postdoctoral Science Foundation ( 2016M591246)
文摘Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.
文摘Serpentinized rocks closely associated with Paleoproterozoic eclogitic metabasites were recently discovered at Eseka area in the northwestern edge of the Congo craton in southern Cameroon.Here,we present new field data,petrography,and first comprehensible wholerock geochemistry data and discuss the protolith and tectonic significance of these serpentinites in the region.The studied rock samples are characterized by pseudomorphic textures,including mesh microstructure formed by serpentine intergrowths with cores of olivine,bastites after pyroxene.Antigorite constitutes almost the whole bulk of the rocks and is associated(to the less amount)with tremolite,talc,spinel,and magnetite.Whole-rock chemistry of the Eseka serpentinites led to the distinction of two types.Type 1 has high MgO(>40 wt%)content and high Mg#values(88.80)whereas Type 2 serpentinite samples display relatively low MgO concentration and Mg#values(<40 and 82.88 wt%,respectively).Both types have low Al/Si and high Mg/Si ratios than the primitive mantle,reflecting a refractory abyssal mantle peridotite protolith.Partial melting modeling indicates that these rocks were derived from melting of spinel peridotite before serpentinization.Bulk rock high-Ti content is similar to the values of subducted serpentinites(>50 ppm).This similarity,associated with the high Cr contents,spinel-peridotite protolith compositions and Mg/Si and Al/Si ratios imply that the studied serpentinites were formed in a subductionrelated environment.The U-shaped chondrite normalizedREE patterns of serpentinized peridotites,coupled with similar enrichments in LREE and HFSE,suggest the refertilized nature due to melt/rock interaction prior to serpentinization.Based on the results,we suggest that the Eseka serpentinized peridotites are mantle residues that suffered a high degree of partial melting in a subductionrelated environment,especially in Supra Subduction Zone setting.These new findings suggest that the Nyong series in Cameroon represents an uncontested Paleoproterozoic suture zone between the Congo craton and the Sao Francisco craton in Brazil.
基金financially supported by the 3D Geological Mapping and Deep Geological Survey of the China Geological Survey under a pilot project entitled Deep Geological Survey of the Benxi–Linjiang Area (Project No. 1212011220247)
文摘Paleoproterozoic granitoids are an important constituent of the Jiao-Liao-Ji Belt(JLJB). The spatial-temporal distribution and types of Paleoproterozoic granitoids are closely related to the evolution of the JLJB. In this paper, we review the field occurrence, petrography, geochronology, and geochemistry of Paleoproterozoic granitoids on Liaodong Peninsula, northeast China. The Paleoproterozoic granitoids can be divided into pre-tectonic(~2.15 Ga;peak age=2.18 Ga) and post-tectonic(~1.85 Ga) granitoids. The pre-tectonic granitoids are magnetite and hornblende-biotite monzogranites and granodiorites. Pre-tectonic monzogranites are widespread in the JLJB and have A2-type affinities. In contrast, pretectonic granodiorites are only present in the Simenzi area and have adakitic affinities. The post-tectonic granitoids consist of porphyritic monzogranite, syenite, diorite, granodiorite, quartz monzonite, monzogranite, and granitic pegmatite, which are adakitic rocks and I-, S-, and A2-type granitoids. The assemblage of pre-tectonic A2-type granitoids and adakitic rocks indicates the initial tectonic setting of the JLJB was a continental back-arc basin. The assemblage of post-tectonic adakitic rocks and I-, S-, and A2-type granitoids indicates a post-collisional setting. The 2.20-2.15 Ga A2-type granitoids and adakitic rocks were associated with the initial stage of back-arc extension, and the peak of back-arc extension is inferred from the subsequent(2.15-2.10 Ga) mafic intrusive activity. The ~1.90 Ga adakitic rocks mark the beginning of the postcollisional stage, which was followed by the intrusion of low-temperature S-and I-type granitoids. High-to low-pressure granitoids(S-type) were generated during the peak of post-collisional lithospheric delamination and asthenospheric upwelling. The emplacement of later granitic pegmatites occurred during the waning of the orogeny.
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
文摘Jebba area southwestern Nigeria forms part of the Nigerian basement complex which lies in the Neoproterozoic PanAfrican mobile belt. It is underlain by several lithological units among which is a polydeformed granitic gneiss. This rock has been dated by LA-ICP-MS yielding a concordant U-Pb zircon age of 2207 ± 20 Ma indicating the crystallization age of the granite protolith. This early Rhyacian age and its affinity with within-plate granites indicates emplacement during crustal extension and rifting presceding the main phase of the Eburnean orogeny. The strong, early, shear fabric, S1, in the rock is interpreted to be also of Paleoproterozoic age i.e. imprinted during the Eburnean orogeny. The Jebba granitic gneiss is thus correlatable with the widely abundant Paleoproterozoic granitic magmatism now represented by many orthogneisses and documented in other parts of southwestern Nigeria, the West African craton, the Borborema Province, the Gurupi Belt, Sao Luis craton and Sao Francisco craton in Brazil.
文摘The western part of the Kedougou Kenieba Inlier is located in the West African Craton. It consists of paleoproterozoic NE-trending elongate belts (subprovinces) of metavolcanic and granitic rocks that alternate with metasedimentary belts. Major linear fault such as the MTZ which also approximate a north-easterly trend form the eastern boundaries. The field observations and geophysics analyses were completed by a microscopic study. Based on these data we define across this region four lithostructural domains from east to west. The western domain is structurally complex. The rocks of this domain have been subjected to a complex history of polyphase deformation and metamorphism. The structural analyse allow us to distinguished three deformation events. The deformation results in the formation of D1 thrust tectonic and D2 and D3 transcurrent tectonic. The structural evolution of the Mako Belt is characterized by deformation dominated by the intrusion of large TTG batholiths (D1) followed by basins formation and transpression accommodating oblique convergence and collision (D2 and D3). The change from thrusting (D1 deformation to transcurrent motion (D2 and D3) is recorded in the marginal basin of the central domain and in Tinkoto pull apart basin. The timing of these basins indicates a diachronous evolution. Deformation styles within the basin are compatible with a dextral transpression which terminated at ca 2090 Ma. Small extensional basins formed over the rocks of the Mako Belt are filled with continental detrital sedimentary rocks that show weak foliation and active felsic volcanism. We suggest that the sinistral transpressive tectonic associated with oblique subduction may have generated the pull-apart basin and subaqueous volcanism. In part these features are now related to terrain accretion, thrusting and strike slip movement during oblique convergence. The inversion of the large scale structural evolution from thrusting to strike slip is common to modern orogenies.
基金supported by the fundings (No. 41272242) from National Natural Science Foundation of China
文摘Ophiolites represent fragments of ancient oceanic lithosphere,tectonically incorporated into continental margins during plate subduction or remained in the subduction–collisional orogenic belt.They provide
文摘Substantial part of the northern margin of Indian plate is subducted beneath the Eurasian plate during the Caenozoic Himalayan orogeny, obscuring older tectonic events in the Lesser Himalaya known to host Proterozoic sedimentary successions and granitic bodies. Tectonostratigraphic units of the Proterozoic Lesser Himalayan sequence (LHS) of Eastern Himalaya, namely the Daling Group in Sikkim and the Bomdila Group in Arunachal Pradesh, provide clues to the nature and extent of Proterozoic passive margin sedimentation, their involvement in pre-Himalayan orogeny and implications for supercontinent reconstruction. The Daling Group, consisting of flaggy quartzite, meta-greywacke and metapelite with minor mafic dyke and sill, and the overlying Buxa Formation with stromatolitic carbonate-quartzite- slate, represent shallow marine, passive margin platformal association. Similar lithostratigraphy and broad depositional framework, and available geochronological data from intrusive granites in Eastern Himalaya indicate strikewise continuity of a shallow marine Paleoproterozoic platformal sequence up to Arunachal Pradesh through Bhutan. Multiple fold sets and tectonic foliations in LHS formed during partial or complete closure of the sea/ocean along the northern margin of Paleoproterozoic India. Such deformation fabrics are absent in the upper Palaeozoic-Mesozoic Gondwana formations in the Lesser Himalaya of Darjeeling-Sikkim indicating influence of older orogeny. Kinematic analysis based on microstructure, and garnet composition suggest Paleoproterozoic deformation and metamorphism of LHS to be distinct from those associated with the foreland propagating thrust systems of the Caenozoic Himalayan collisional belt. Two possibilities are argued here: (1) the low greenschist facies domain in the LHS enveloped the amphibolite to granulite facies domains, which were later tectonically severed; (2) the older deformation and metamorphism relate to a Pacific type accretionary orogen which affected the northern margin of greater India. Better understanding of geodynamic evolution of the northern margin of India in the Paleoproterozoic has additional bearing on more refined model of reconstruction of Colllrnhia.
基金supported by a grant for"Chronostratigraphy for the Mesoproterozoic strata in Jixian,North China(No.26800259)"and"Hadean BioScience(No.26106002)"from the Ministry of Education,Culture,Sports,Science,and Technology,Japan
文摘The Francevillian Group in Gabonese Republic was recently established as a typical sedimentary sequence for the Paleoproterozoic.However,its age is rather poorly constrained,mainly based on Rb-Sr and Nd-Sm datings.This study reports new zircon data obtained from Chaillu massif and N'goutou complex,which constrain the protolith age of the basement orthogneisses and the igneous age of an intrusive granite,respectively.Most zircons from the orthogneisses are blue and exhibit oscillatory zoning in cathode-luminescence images.Zircons with lower common lead abundances tend to be distributed close to the concordia curve.Two age clusters around 2860 Ma and 2910 Ma are found in zircons plotted on the concordia curve.Based on the Th/U ratios of zircons,these ages correspond to the protolith ages of the orthogneisses,and the zircons are not metamorphic in origin.Syenites and granites were collected from the N'goutou complex that intrudes into the FA and FB units of the Francevillian Group.The granitoids exhibit chemical composition of A-type granite affinity.Half of zircons separated from the granite are non-luminous,and the remaining half exhibit obscure internal textures under cathode-luminescence observation.All zircon grains contain significant amounts of common lead;the lead isotopic variability is probably attributed to the mixing of two components in the zircons.The zircon radiogenic ^(207)Pb/^(206)Pb ratio is 0.13707 ± 0.0010.corresponding to a ^(207)Pb/^(206)Pb age of 2191 ± 13 Ma.This constrains the minimum depositional age of the FA and FB units.Furthermore,the FB unit consists of manganese-rich carbonate rocks and organic carbon-rich black shales with macroscopic fossils.Based on our age constraints,these organisms appeared in the study area just after the last Paleoproterozoic Snowball Earth event,in concert with global scale oxidation event encompassing the Snowball Earth.
基金financially supported by the National Natural Science Foundation(Grant No.41872238)。
文摘The late Paleoproterozoic Dagushi Formation comprises a fluvial-lacustrine succession and represents the initial fill of the Xiong'er Basin in the southern North China Craton.Employing integrated outcrop surveys and detrital zircon UPb-Hf dating,this study examines the provenance and depositional setting of the Dagushi Formation.Five major depositional facies,including braided channel,distributary channel,subaqueous stream/mouth bar,pro-delta and shallow lake,were identified,based on lithofacies and associations.They were interpreted as representing a braided river deltalacustrine system.The ages of the last metamorphic event of the basement,covering volcanics and the youngest zircon together constrain a depositional age of ca.1.79 Ga for the Dagushi Formation.Zircon age distributions reveal a provenance change from ca.2.7–2.5 Ga rocks in the lower part,to ca.2.3–1.9 Ga sources in the middle-upper part of the Dagushi Formation.Considering the vertical sedimentology,this provenance change could be induced by the rising water-level caused by a tectonic subsidence.The ca.2.7–2.5 Ga zircons are suggested to be locally sourced from the late Neoarchean–Paleoproterozoic metamorphic basement.The northeast Zhongtiao Mts area(current co-ordinates)is supposed to have appeared as a paleo-uplift and served as a source area for the Paleoproterozoic grains.The Dagushi Formation records an early‘underfilled'stage of the Xiong'er Rift.