期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Estimating canopy closure density and above-ground tree biomass using partial least square methods in Chinese boreal forests 被引量:5
1
作者 LEI Cheng-liang JU Cun-yong +3 位作者 CAI Ti-jiu J1NG Xia WEI Xiao-hua DI Xue-ying 《Journal of Forestry Research》 CAS CSCD 2012年第2期191-196,共6页
Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used parti... Boreal forests play an important role in global environment systems. Understanding boreal forest ecosystem structure and function requires accurate monitoring and estimating of forest canopy and biomass. We used partial least square regression (PLSR) models to relate forest parameters, i.e. canopy closure density and above ground tree biomass, to Landsat ETM+ data. The established models were optimized according to the variable importance for projection (VIP) criterion and the bootstrap method, and their performance was compared using several statistical indices. All variables selected by the VIP criterion passed the bootstrap test (p〈0.05). The simplified models without insignificant variables (VIP 〈1) performed as well as the full model but with less computation time. The relative root mean square error (RMSE%) was 29% for canopy closure density, and 58% for above ground tree biomass. We conclude that PLSR can be an effective method for estimating canopy closure density and above ground biomass. 展开更多
关键词 above-ground tree biomass bootstrap method canopy clo- sure density partial least square regression (PLSR) VIP criterion
下载PDF
Characteristic wavelength selection of volatile organic compounds infrared spectra based on improved interval partial least squares 被引量:2
2
作者 Wei Ju Changhua Lu +4 位作者 Yujun Zhang Weiwei Jiang Jizhou Wang Yi Bing Lu Feng Hong 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第2期35-53,共19页
As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring sys... As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths. 展开更多
关键词 Ambient air monitoring Fourier transform infrared spectra analysis variable selection interval partial least square Monte-Carlo sampling
下载PDF
Factors influencing the internet banking adoption decision in North Cyprus: an evidence from the partial least square approach of the structural equation modeling 被引量:2
3
作者 Hiba Alhassany Faisal Faisal 《Financial Innovation》 2018年第1期422-442,共21页
Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social ... Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors. 展开更多
关键词 Behavioral theories Technology adoption TAM Subjective norm Personal innovativeness Perceived risk partial least square Structural equation modeling
下载PDF
Partial least square modeling of hydrolysis: analyzing the impacts of pH and acetate
4
作者 Lü Fan HE Pin-jing SHAO Li-ming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第4期805-809,共5页
pH and volatile fatty acids both might affect the further hydrolysis of particulate solid waste, which is the limiting-step of anaerobic digestion. To clarify the individual effects of pH and volatile fatty acids, bat... pH and volatile fatty acids both might affect the further hydrolysis of particulate solid waste, which is the limiting-step of anaerobic digestion. To clarify the individual effects of pH and volatile fatty acids, batch experiments were conducted at fixed pH value (pH 5-9) with or without acetate (20 g/L). The hydrolysis efficiencies of carbohydrate and protein were evaluated by carbon and nitrogen content of solids, amylase activity and proteinase activity. The trend of carbohydrate hydrolysis with pH was not affected by the addition of acetate, following the sequence ofpH 7〉pH 8〉pH 9〉pH 6〉pH 5; but the inhibition of acetate (20 g/L) was obvious by 10%-60 %. The evolution of residual nitrogen showed that the effect of pH on protein hydrolysis was minor, while the acetate was seriously inhibitory especially at alkali condition by 45%-100 %. The relationship between the factors (pH and acetate) and the response variables was evaluated by partial least square modeling (PLS). The PLS analysis demonstrated that the hydrolysis of carbohydrate was both affected by pH and acetate, with pH the more important factor. Therefore, the inhibition by acetate on carbohydrate hydrolysis was mainly due to the corresponding decline of pH, but the presence of acetate species, while the acetate species was the absolutely important factor for the hydrolysis of protein. 展开更多
关键词 INHIBITION HYDROLYSIS PH volatile fattyacids partial least square
下载PDF
DATA MODELING METHOD BASED ON PARTIAL LEAST SQUARE REGRESSION AND APPLICATIO N IN CORRELATION ANALYSIS OF THE STATOR BARS CONDITION PARAMETERS
5
作者 李锐华 高乃奎 +1 位作者 谢恒堃 史维祥 《Journal of Pharmaceutical Analysis》 SCIE CAS 2004年第2期127-131,共5页
Objective To investigate v arious data message of the stator bars condition parameters under the condition that only a few samples are available, especially about correlation information between the nondestructiv... Objective To investigate v arious data message of the stator bars condition parameters under the condition that only a few samples are available, especially about correlation information between the nondestructive parameters and residual breakdown voltage of the stat or bars. Methods Artificial stator bars is designed to simulat e the generator bars. The partial didcharge( PD) and dielectric loss experiments are performed in order to obtain the nondestructive parameters, and the residua l breakdown voltage acquired by AC damage experiment. In order to eliminate the dimension effect on measurement data, raw data is preprocessed by centered-compr ess. Based on the idea of extracting principal components, a partial least squar e (PLS) method is applied to screen and synthesize correlation information betwe en the nondestructive parameters and residual breakdown voltage easily. Moreover , various data message about condition parameters are also discussed. Re sults Graphical analysis function of PLS is easily to understand vario us data message of the stator bars condition parameters. The analysis Results ar e consistent with result of aging testing. Conclusion The meth od can select and extract PLS components of condition parameters from sample dat a, and the problems of less samples and multicollinearity are solved effectively in regression analysis. 展开更多
关键词 partial least square PCA condition parameter s tator winding
下载PDF
Boosting the partial least square algorithm for regression modelling
6
作者 Ling YU Tiejun WU 《控制理论与应用(英文版)》 EI 2006年第3期257-260,共4页
Boosting algorithms are a class of general methods used to improve the general periormance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution... Boosting algorithms are a class of general methods used to improve the general periormance of regression analysis. The main idea is to maintain a distribution over the train set. In order to use the given distribution directly, a modified PLS algorithm is proposed and used as the base learner to deal with the nonlinear multivariate regression problems. Experiments on gasoline octane number prediction demonstrate that boosting the modified PLS algorithm has better general performance over the PLS algorithm. 展开更多
关键词 BOOSTING partial least square (PLS) Multivariate regression GENERALIZATION
下载PDF
Model of Hot Metal Silicon Content in Blast Furnace Based on Principal Component Analysis Application and Partial Least Square 被引量:11
7
作者 SHI Lin LI Zhi-ling +1 位作者 YU Tao LI Jiang-peng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第10期13-16,共4页
In blast furnace (BF) iron-making process, the hot metal silicon content was usually used to measure the quality of hot metal and to reflect the thermal state of BF. Principal component analysis (PCA) and partial ... In blast furnace (BF) iron-making process, the hot metal silicon content was usually used to measure the quality of hot metal and to reflect the thermal state of BF. Principal component analysis (PCA) and partial least- square (PLS) regression methods were used to predict the hot metal silicon content. Under the conditions of BF rela- tively stable situation, PCA and PLS regression models of hot metal silicon content utilizing data from Baotou Steel No. 6 BF were established, which provided the accuracy of 88.4% and 89.2%. PLS model used less variables and time than principal component analysis model, and it was simple to calculate. It is shown that the model gives good results and is helpful for practical production. 展开更多
关键词 hot metal silicon content partial least square principal component analysis temperature prediction
原文传递
Application of neural network model coupling with the partial least-squares method for forecasting watre yield of mine 被引量:2
8
作者 陈南祥 曹连海 黄强 《Journal of Coal Science & Engineering(China)》 2005年第1期40-43,共4页
Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co... Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting. 展开更多
关键词 water yield of mine partial least square method neural network forecasting model
下载PDF
Spatter Rate Estimation of GMAW-S based on Partial Least Square Regression 被引量:1
9
作者 蔡艳 王广伟 +2 位作者 杨海澜 华学明 吴毅雄 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第6期695-701,共7页
This paper analyzes the drop transfer process in gas metal arc welding in short-circuit transfer mode (GMAW-S) in order to develop an optimized spatter rate model that can be used on line. According to thermodynamic... This paper analyzes the drop transfer process in gas metal arc welding in short-circuit transfer mode (GMAW-S) in order to develop an optimized spatter rate model that can be used on line. According to thermodynamic characters and practical behavior, a complete arcing process is divided into three sub-processes: arc re-ignition, energy output and shorting preparation. Shorting process is then divided as drop spread, bridge sustention and bridge destabilization. Nine process variables and their distribution are analyzed based on welding experiments with high-speed photos and synchronous current and voltage signals. Method of variation coefficient is used to reflect process consistency and to design characteristic parameters. Partial least square regression (PLSR) is utilized to set up spatter rate model because of severe correlativity among the above characteristic parameters. PLSR is a new multivariate statistical analysis method, in which regression modeling, data simplification and relativity analysis are included in a single algorithm. Experiment results show that the regression equation based on PLSR is effective for on-line predicting spatter rate of its corresponding welding condition. 展开更多
关键词 short-circuit transfer gas metal arc welding partial least square regression (PLSR) spatter and process modeling
原文传递
Comparison of Artificial Neural Networks with Partial Least Squares Regression for Simultaneous Determinations by ICP-AES 被引量:1
10
作者 KHAYATZADEH MAHANI, Mohamad CHALOOSI, Marzieh +2 位作者 GHANADI MARAGHEH, Mohamad KHANCHI, Ali Reza AFZALI, Dariush 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第11期1658-1662,共5页
Simultaneous determination of several elements (U, Ta, Mn, Zr and W) with inductively coupled plasma atomic emission spectrometry (ICP-AES) in the presence of spectral interference was performed using chemometrics... Simultaneous determination of several elements (U, Ta, Mn, Zr and W) with inductively coupled plasma atomic emission spectrometry (ICP-AES) in the presence of spectral interference was performed using chemometrics methods. True comparison between artificial neural network (ANN) and partial least squares regression (PLS) for simultaneous determination in different degrees of overlap was investigated. The emission spectra were recorded at uranium analytical line (263.553 nm) with a 0.06 nm spectral window by ICP-AES. Principal component analysis was applied to data and scores on 5 dominant principal components were subjected to ANN. A 5-5-5 (input, hidden and output neurons) network was used with linear transfer function after both hidden and output layers. The PI,S model was trained with five latent variables and 20 samples in calibration set. The relative errors of predictions (REP) in test set were 3.75% and 3.56% for ANN and PLS respectively. 展开更多
关键词 CHEMOMETRICS artificial neural network partial least square simultaneous determination
原文传递
Evaluation model for freeway incident management system 被引量:2
11
作者 何锭 倪富健 杨顺新 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期126-131,共6页
In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evalu... In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model. 展开更多
关键词 freeway incident management system evaluation model analytical hierarchical process fuzzy comprehensive evaluations partial least square
下载PDF
Measurement and analysis of soil nitrogen and organic matter content using near-infrared spectroscopy techniques 被引量:8
12
作者 何勇 宋海燕 +1 位作者 PEREIRA Annia García GóMEZ Antihus Hernández 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第11期1081-1086,共6页
Near infrared reflectance (N1R) spectroscopy is as a rapid, convenient and simple nondestructive technique useful for quantifying several soil properties. This method was used to estimate nitrogen (N) and organic ... Near infrared reflectance (N1R) spectroscopy is as a rapid, convenient and simple nondestructive technique useful for quantifying several soil properties. This method was used to estimate nitrogen (N) and organic matter (OM) content in a soil of Zhejiang Province, Hangzhou County. A total of 125 soil samples were taken from the field. Ninety-five samples spectra were used during the calibration and cross validation stage. Thirty samples spectra were used to predict N and OM concentration. NIR spectra of these samples were correlated using partial least square regression. The regression coefficients between measured and predicted values of N and OM was 0.92 and 0.93, and SEP (standard error of prediction) were 3.28 and 0.06, respectively, which showed that NIR method had potential to accurately predict these constituents in this soil. The results showed that NIR spectroscopy could be a good tool for precision farming application. 展开更多
关键词 NIR spectroscopy partial least square Precision farming Soil spatial variability NITROGEN Organic matter
下载PDF
Application of NIR spectroscopy for firmness evaluation of peaches 被引量:9
13
作者 Xia-ping FU Yi-bin YING Ying ZHOU Li-juan XIE Hui-rong XU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第7期552-557,共6页
The use of near infrared (NIR) spectroscopy was proved to be a useful tool for quality analysis of fruits. A bifurcated fiber type NIR spectrometer, with a detection range of 800-2500 nm by InGaAs detector, was used... The use of near infrared (NIR) spectroscopy was proved to be a useful tool for quality analysis of fruits. A bifurcated fiber type NIR spectrometer, with a detection range of 800-2500 nm by InGaAs detector, was used to evaluate the firmness of peaches. Anisotropy of NIR spectra and firmness of peaches in relation to detecting positions of different parts (including three latitudes and three longitudes) were investigated. Both spectra absorbency and firmness of peach were influenced by longitudes (i, ii, iii) and latitudes (A, B, C). For modeling, two thirds of the samples were used as the calibration set and the remaining one third were used as the validation or prediction set. Partial least square regression (PLSR) models for different longitude and latitude spectra and for the whole fruit show that collecting several NIR spectra from different longitudes and latitudes of a fruit for NIR calibration modeling can improve the modeling performance. In addition, proper spectra pretreatments like scattering correction or derivative also can enhance the modeling performance. The best results obtained in this study were from the holistic model with multiplicative scattering correction (MSC) pretreatment, with correlation coefficient of cross-validation γcv=0.864, root mean square error of cross-validation RMSECV=6.71 N, correlation coefficient of calibration r=0.948, root mean square error of calibration RMSEC=4.21 N and root mean square error of prediction RMSEP=5.42 N. The results of this study are useful for further research and application that when applying NIR spectroscopy for objectives with anisotropic differences, spectra and quality indices are necessarily measured from several parts of each object to improve the modeling performance. 展开更多
关键词 Near infrared (NIR) ANISOTROPY PEACH FIRMNESS partial least square regression (PLSR)
下载PDF
Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis 被引量:9
14
作者 ZHANG Jing-cheng YUAN Lin +3 位作者 WANG Ji-hua HUANG Wen-jiang CHEN Li-ping ZHANGDong-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第9期1474-1484,共11页
Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect ... Powdery mildew (Blumeria graminis) is one of the most destructive crop diseases infecting winter wheat plants, and has devastated millions of hectares of farmlands in China. The objective of this study is to detect the disease damage of powdery mildew on leaf level by means of the hyperspectral measurements, particularly using the continuous wavelet analysis. In May 2010, the reflectance spectra and the biochemical properties were measured for 114 leaf samples with various disease severity degrees. A hyperspectral imaging system was also employed for obtaining detailed hyperspectral information of the normal and the pustule areas within one diseased leaf. Based on these spectra data, a continuous wavelet analysis (CWA) was carried out in conjunction with a correlation analysis, which generated a so-called correlation scalogram that summarizes the correlations between disease severity and the wavelet power at different wavelengths and decomposition scales. By using a thresholding approach, seven wavelet features were isolated for developing models in determining disease severity. In addition, 22 conventional spectral features (SFs) were also tested and compared with wavelet features for their efficiency in estimating disease severity. The multivariate linear regression (MLR) analysis and the partial least square regression (PLSR) analysis were adopted as training methods in model mildew on leaf level were found to be closely related with the development. The spectral characteristics of the powdery spectral characteristics of the pustule area and the content of chlorophyll. The wavelet features performed better than the conventional SFs in capturing this spectral change. Moreover, the regression model composed by seven wavelet features outperformed (R2=0.77, relative root mean square error RRMSE=0.28) the model composed by 14 optimal conventional SFs (R2---0.69, RRMSE--0.32) in estimating the disease severity. The PLSR method yielded a higher accuracy than the MLR method. A combination of CWA and PLSR was found to be promising in providing relatively accurate estimates of disease severity of powdery mildew on leaf level. 展开更多
关键词 powdery mildew disease severity continuous wavelet analysis partial least square regression
下载PDF
Voidage Measurement of Gas-Oil Two-phase Flow 被引量:3
15
作者 王微微 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第3期339-344,共6页
A new method for the voidage measurement of gas-oil two-phase flow was proposed.The voidage measurement was implemented by the identification of flow pattern and a flow pattern specific voidage measure- ment model.The... A new method for the voidage measurement of gas-oil two-phase flow was proposed.The voidage measurement was implemented by the identification of flow pattern and a flow pattern specific voidage measure- ment model.The flow pattern identification was achieved by combining the fuzzy pattern recognition technique and the crude cross-sectional image reconstructed by the simple back projection algorithm.The genetic algorithm and the partial least square method were applied to develop the voidage measurement models.Experimental results show that the proposed method is effective.It can overcome the influence of flow pattern on the voidage measure- ment,and also has the advantages of simplicity and speediness. 展开更多
关键词 VOIDAGE two-phase flow genetic algorithm TOMOGRAPHY partial least square method
下载PDF
Application of Wavelet Transform in the Prediction of Navel Orange Vitamin C Content by Near-Infrared Spectroscopy 被引量:4
16
作者 XIA Jun-fang LI Xiao-yu +2 位作者 LI Pei-wu MA Qian DING Xiao-xia 《Agricultural Sciences in China》 CAS CSCD 2007年第9期1067-1073,共7页
This study was to search for an approach for rapid measurement of orange vitamin C (Vc) content. By using different decomposing levels of Daubechies 3 wavelet transform, the near-infrared spectra signals obtained fr... This study was to search for an approach for rapid measurement of orange vitamin C (Vc) content. By using different decomposing levels of Daubechies 3 wavelet transform, the near-infrared spectra signals obtained from intact fruits of 100 navel orange samples were denoised, and the results of the predicted Vc contents for the corresponding samples determined by the reconstructed spectra after denoising were validated by means of PLS-CV (partial least squared-cross validation). It was shown that the prediction effects verified by PLS-CV analysis varied when different wavelet transform decomposing levels were employed. At the wavelet decomposing level 4, the best prediction effect was obtained, with the correlation coefficient R between the prediction and true values being 0.9574 and the expected variance RMSECV being as low as 3.9 mg 100 g^-1. Furthermore, the 11 different approaches for the pretreatment of the near-infrared spectrum were compared. It was found that the calibration model established by PLS using spectra pretreated by wavelet transform denoising provided the best prediction for Vc content, exhibiting the highest correlation between the prediction and true values by cross validation. In conclusion, the near infrared spectral model denoised by means of wavelet transform can be used for accurate, rapid, and nondestructive quantitative analysis on navel orange Vc content. 展开更多
关键词 navel orange near infrared spectroscopy wavelet denoising partial least square
下载PDF
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets 被引量:3
17
作者 DU Lin-na WU Li-hang +5 位作者 LU Jia-hui GUO Wei-liang MENG Qing-fan JIANG Chao-jun SHEN Si-le TENG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期518-523,共6页
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r... Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems. 展开更多
关键词 Rifampicin isoniazid and pyrazinamide tablets NIR diffuse reflectance spectroscopy partial least square Back-propagation neural network Radial basis function neural network
下载PDF
An efficient latent variable optimization approach with stochastic constraints for complex industrial process 被引量:2
18
作者 费正顺 刘康玲 +1 位作者 胡斌 梁军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第10期1670-1678,共9页
For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used ... For complex chemical processes,process optimization is usually performed on causal models from first principle models.When the mechanism models cannot be obtained easily,restricted model built by process data is used for dynamic process optimization.A new strategy is proposed for complex process optimization,in which latent variables are used as decision variables and statistics is used to describe constraints.As the constraint condition will be more complex by projecting the original variable to latent space,Hotelling T^2 statistics is introduced for constraint formulation in latent space.In this way,the constraint is simplified when the optimization is solved in low-dimensional space of latent variable.The validity of the methodology is illustrated in pH-level optimal control process and practical polypropylene grade transition process. 展开更多
关键词 Data-driven model OPTIMIZATION partial least square POLYMERIZATION
下载PDF
Multi-loop Constrained Iterative Model Predictive Control Using ARX -PLS Decoupling Structure 被引量:2
19
作者 吕燕 梁军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第10期1129-1143,共15页
A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industr... A multi-loop constrained model predictive control scheme based on autoregressive exogenous-partial least squares(ARX-PLS) framework is proposed to tackle the high dimension, coupled and constraints problems in industry processes due to safety limitation, environmental regulations, consumer specifications and physical restriction. ARX-PLS decoupling character enables to turn the multivariable model predictive control(MPC) controller design in original space into the multi-loop single input single output(SISO) MPC controllers design in latent space.An idea of iterative method is applied to decouple the constraints latent variables in PLS framework and recursive least square is introduced to identify ARX-PLS model. This algorithm is applied to a non-square simulation system and a stirred reactor for ethylene polymerizations comparing with adaptive internal model control(IMC) method based on ARX-PLS framework. Its application has shown that this method outperforms adaptive IMC method based on ARX-PLS framework to some extent. 展开更多
关键词 partial least square CONSTRAINT model predictive control iterative method
下载PDF
New Descriptors of Amino Acids and Its Applications to Peptide Quantitative Structure-activity Relationship 被引量:2
20
作者 舒茂 霍丹群 +3 位作者 梅虎 梁桂兆 张梅 李志良 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第11期1375-1383,共9页
A new set of descriptors, HSEHPCSV (component score vector of hydrophobic, steric, and electronic properties together with hydrogen bonding contributions), were derived from principal component analyses of 95 physic... A new set of descriptors, HSEHPCSV (component score vector of hydrophobic, steric, and electronic properties together with hydrogen bonding contributions), were derived from principal component analyses of 95 physicochemical variables of 20 natural amino acids separately according to different kinds of properties described, namely, hydrophobic, steric, and electronic properties as well as hydrogen bonding contributions. HSEHPCSV scales were then employed to express structures of angiotensin-converting enzyme inhibitors, bitter tasting thresholds and bactericidal 18 peptide, and to construct QSAR models based on partial least square (PLS). The results obtained are as follows: the multiple correlation coefficient (R2cum) of 0.846, 0.917 and 0.993, leave-one-out cross validated Q2cm of 0.835, 0.865 and 0.899, and root-mean-square error for estimated error (RMSEE) of 0.396, 0.187and 0.22, respectively. Satisfactory results showed that, as new amino acid scales, data of HSEHPCSV may be a useful structural expression methodology'for the studies on peptide QSAR (quantitative structure-activity relationship) due to many advantages such as plentiful structural information, definite physical and chemical meaning and easy interpretation. 展开更多
关键词 PEPTIDE quantitative structure-activity relationship principal component analysis genetic algorithm partial least square
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部