This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate ...Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.展开更多
High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of ...High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.展开更多
A memorial for Jiang Zemin,who passed away on November 30,2022,at the age of 96,was held on December 6,2022,at the Great Hall of the People in Beijing.President Xi Jinping addressed the meeting.In a eulogy delivered a...A memorial for Jiang Zemin,who passed away on November 30,2022,at the age of 96,was held on December 6,2022,at the Great Hall of the People in Beijing.President Xi Jinping addressed the meeting.In a eulogy delivered at the memorial,Xi attributed the tremendous achievements of the Party and the nation between 1989 and 2002 to the late Chinese leader’s eminence and bold vision,the key role he played,and his superb political leadership.展开更多
The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive comp...The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.展开更多
The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of par...The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.展开更多
Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells c...Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.展开更多
Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train s...Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train speed and the distance(D)from the track centerline under various operating conditions.The findings elucidate a marked elevation in the aerodynamic effect amplitude on sound barriers as train speeds increase.In single-train passages,the aerodynamic effect amplitude manifests a direct relationship with the square of the train speed.When two trains pass each other,the aerodynamic amplitude intensifies due to an additional aerodynamic increment on the sound barrier.This increment exhibits an approximate quadratic correlation with the retrograde train speed.Notably,the impact of high-speed trains on sound barrier aerodynamics surpasses that of low-speed trains,and this discrepancy amplifies with larger speed differentials between trains.Moreover,the train-induced aerodynamic effect diminishes significantly with greater distance(D),with occurrences of pressure coefficient(CP)exceeding the standard thresholds during dual-train passages.This study culminates in the formulation of universal equations for quantifying the influence of train speed and distance(D)on sound barrier aerodynamic characteristics across various operational scenarios.展开更多
This focused issue of the Communications on Applied Mathematics and Computation is dedicated to the memory of Professor Ching-Shan Chou,who passed away in November 2021.With her passing,our community of applied mathem...This focused issue of the Communications on Applied Mathematics and Computation is dedicated to the memory of Professor Ching-Shan Chou,who passed away in November 2021.With her passing,our community of applied mathematicians lost not only a brilliant researcher but also a cherished friend and colleague.展开更多
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca...Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.展开更多
In this paper,efficient signal detectors are designed for Orthogonal Time Frequency Space(OTFS)modulation with Index Modulation(IM)systems.Firstly,the Minimum Mean Squared Error(MMSE)based linear equalizer and its cor...In this paper,efficient signal detectors are designed for Orthogonal Time Frequency Space(OTFS)modulation with Index Modulation(IM)systems.Firstly,the Minimum Mean Squared Error(MMSE)based linear equalizer and its corresponding soft-aided decision are studied for OTFS-IM.To further improve the performance,a Vectorby-Vector-aided Message Passing(VV-MP)detector and its associated soft-decision are proposed,where each IM symbol is considered an entire vector utilized for message calculation and passing.Simulation results are shown that the OTFS-IM system relying on the proposed detectors is capable of providing considerable Bit Error Rate(BER)performance gains over the OTFS and Orthogonal Frequency Division Multiplex(OFDM)with IM systems.展开更多
Glaucoma is a multifactorial eye disorder that can cause vision loss and irreversible blindness,affecting individ uals aged 40 to 80 yea rs worldwide.Due to the aging population,it is expected that the number of peopl...Glaucoma is a multifactorial eye disorder that can cause vision loss and irreversible blindness,affecting individ uals aged 40 to 80 yea rs worldwide.Due to the aging population,it is expected that the number of people affected by glaucoma will surpass 111 million by 2040 as the disease becomes more prevalent.Glaucoma primarily contributes to optic nerve axon loss and the progressive degeneration of retinal ganglion cells (RGCs),subsequently leading to vision impairment.展开更多
Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular net...Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial i...Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods.展开更多
China is home to the world’s largest aging population.According to data of the seventh national census,the number of people aged 60 and above is 264.02 million,accounting for 18.70 percent of Chinese population.The M...China is home to the world’s largest aging population.According to data of the seventh national census,the number of people aged 60 and above is 264.02 million,accounting for 18.70 percent of Chinese population.The Ministry of Civil Affairs forecasts that China's senior population will exceed 300 million during the 14th Five-Year Plan period(2021-2025),passing from a mildly aging society to a moderately aging society.展开更多
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
基金supported by NSFC projects(61960206005,61803211,61871111,62101275,62171127,61971136,and 62001056)Jiangsu NSF project(BK20200820)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX210106)Research Fund of National Mobile Communications Research Laboratory.
文摘Compressed sensing(CS)aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to matrix inversion.For AMP,its performance is guaranteed by the severe restriction of the measurement matrix,which limits its application in solving CS problem.To overcome the drawbacks of the above algorithms,in this paper,we present a low complexity algorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we apply the variance auto-tuning into the VAMP to implement the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.
基金supported by National Key R&D Program of China(Nos.2019YFE03050002,2018YFE0310400,and 2022YFE03040002)National Natural Science Foundation of China(Nos.12005003 and 11975270)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2022-04)。
文摘High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.
文摘A memorial for Jiang Zemin,who passed away on November 30,2022,at the age of 96,was held on December 6,2022,at the Great Hall of the People in Beijing.President Xi Jinping addressed the meeting.In a eulogy delivered at the memorial,Xi attributed the tremendous achievements of the Party and the nation between 1989 and 2002 to the late Chinese leader’s eminence and bold vision,the key role he played,and his superb political leadership.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12072217 and 42077254)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567).
文摘The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.
基金the Deanship of Scientific Research at King Abdulaziz University,Jeddah,Saudi Arabia under the Grant No.RG-12-611-43.
文摘The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memorysystems.However, MPI implementations can contain defects that impact the reliability and performance of parallelapplications. Detecting and correcting these defects is crucial, yet there is a lack of published models specificallydesigned for correctingMPI defects. To address this, we propose a model for detecting and correcting MPI defects(DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blockingpoint-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defectsaddressed by the DC_MPI model include illegal MPI calls, deadlocks (DL), race conditions (RC), and messagemismatches (MM). To assess the effectiveness of the DC_MPI model, we performed experiments on a datasetconsisting of 40 MPI codes. The results indicate that the model achieved a detection rate of 37 out of 40 codes,resulting in an overall detection accuracy of 92.5%. Additionally, the execution duration of the DC_MPI modelranged from 0.81 to 1.36 s. These findings show that the DC_MPI model is useful in detecting and correctingdefects in MPI implementations, thereby enhancing the reliability and performance of parallel applications. TheDC_MPImodel fills an important research gap and provides a valuable tool for improving the quality ofMPI-basedparallel computing systems.
基金supported by Canada First Research Excellence Fund,Medicine by Design(to CMM)。
文摘Over the last two decades,the dogma that cell fate is immutable has been increasingly challenged,with important implications for regenerative medicine.The brea kth rough discovery that induced pluripotent stem cells could be generated from adult mouse fibroblasts is powerful proof that cell fate can be changed.An exciting extension of the discovery of cell fate impermanence is the direct cellular reprogram ming hypothesis-that terminally differentiated cells can be reprogrammed into other adult cell fates without first passing through a stem cell state.
基金This study was supported in part by the National Natural Science Foundation of China under Grant Nos.52278463,52208505,and 52202422.
文摘Investigations into the aerodynamic properties of vertical sound barriers exposed to high-speed operations employ computational fluid dynamics.The primary focus of this research is to evaluate the influence of train speed and the distance(D)from the track centerline under various operating conditions.The findings elucidate a marked elevation in the aerodynamic effect amplitude on sound barriers as train speeds increase.In single-train passages,the aerodynamic effect amplitude manifests a direct relationship with the square of the train speed.When two trains pass each other,the aerodynamic amplitude intensifies due to an additional aerodynamic increment on the sound barrier.This increment exhibits an approximate quadratic correlation with the retrograde train speed.Notably,the impact of high-speed trains on sound barrier aerodynamics surpasses that of low-speed trains,and this discrepancy amplifies with larger speed differentials between trains.Moreover,the train-induced aerodynamic effect diminishes significantly with greater distance(D),with occurrences of pressure coefficient(CP)exceeding the standard thresholds during dual-train passages.This study culminates in the formulation of universal equations for quantifying the influence of train speed and distance(D)on sound barrier aerodynamic characteristics across various operational scenarios.
文摘This focused issue of the Communications on Applied Mathematics and Computation is dedicated to the memory of Professor Ching-Shan Chou,who passed away in November 2021.With her passing,our community of applied mathematicians lost not only a brilliant researcher but also a cherished friend and colleague.
基金supported by the National Natural Science Foundation of China-China State Railway Group Co.,Ltd.Railway Basic Research Joint Fund (Grant No.U2268217)the Scientific Funding for China Academy of Railway Sciences Corporation Limited (No.2021YJ183).
文摘Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807100in part by the National Natural Science Foundation of China under Grant 62001179in part by the Fundamental Research Funds for the Central Universities under Grant 2020kfyXJJS111.
文摘In this paper,efficient signal detectors are designed for Orthogonal Time Frequency Space(OTFS)modulation with Index Modulation(IM)systems.Firstly,the Minimum Mean Squared Error(MMSE)based linear equalizer and its corresponding soft-aided decision are studied for OTFS-IM.To further improve the performance,a Vectorby-Vector-aided Message Passing(VV-MP)detector and its associated soft-decision are proposed,where each IM symbol is considered an entire vector utilized for message calculation and passing.Simulation results are shown that the OTFS-IM system relying on the proposed detectors is capable of providing considerable Bit Error Rate(BER)performance gains over the OTFS and Orthogonal Frequency Division Multiplex(OFDM)with IM systems.
基金supported by the National Institutes of Health grants EY034116 (to WKJ, KYK, and SHC) and AG081037 (to YIM and WKJ)。
文摘Glaucoma is a multifactorial eye disorder that can cause vision loss and irreversible blindness,affecting individ uals aged 40 to 80 yea rs worldwide.Due to the aging population,it is expected that the number of people affected by glaucoma will surpass 111 million by 2040 as the disease becomes more prevalent.Glaucoma primarily contributes to optic nerve axon loss and the progressive degeneration of retinal ganglion cells (RGCs),subsequently leading to vision impairment.
基金supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003)Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053)。
文摘Orthogonal time frequency space(OTFS)technique, which modulates data symbols in the delayDoppler(DD) domain, presents a potential solution for supporting reliable information transmission in highmobility vehicular networks. In this paper, we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler. We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP), which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM). The empirical state evolution(SE) analysis is then leveraged to predict the performance of our proposed algorithm. To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM) algorithm. Finally, Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金financially supported by the Deanship of Scientific Research at King Khalid University under Research Grant Number(R.G.P.2/549/44).
文摘Algorithms for steganography are methods of hiding data transfers in media files.Several machine learning architectures have been presented recently to improve stego image identification performance by using spatial information,and these methods have made it feasible to handle a wide range of problems associated with image analysis.Images with little information or low payload are used by information embedding methods,but the goal of all contemporary research is to employ high-payload images for classification.To address the need for both low-and high-payload images,this work provides a machine-learning approach to steganography image classification that uses Curvelet transformation to efficiently extract characteristics from both type of images.Support Vector Machine(SVM),a commonplace classification technique,has been employed to determine whether the image is a stego or cover.The Wavelet Obtained Weights(WOW),Spatial Universal Wavelet Relative Distortion(S-UNIWARD),Highly Undetectable Steganography(HUGO),and Minimizing the Power of Optimal Detector(MiPOD)steganography techniques are used in a variety of experimental scenarios to evaluate the performance of the proposedmethod.Using WOW at several payloads,the proposed approach proves its classification accuracy of 98.60%.It exhibits its superiority over SOTA methods.
文摘China is home to the world’s largest aging population.According to data of the seventh national census,the number of people aged 60 and above is 264.02 million,accounting for 18.70 percent of Chinese population.The Ministry of Civil Affairs forecasts that China's senior population will exceed 300 million during the 14th Five-Year Plan period(2021-2025),passing from a mildly aging society to a moderately aging society.