期刊文献+
共找到155,546篇文章
< 1 2 250 >
每页显示 20 50 100
Pathogenesis, diagnosis, and treatment of epilepsy: electromagnetic stimulation-mediated neuromodulation therapy and new technologies
1
作者 Dian Jiao Lai Xu +3 位作者 Zhen Gu Hua Yan Dingding Shen Xiaosong Gu 《Neural Regeneration Research》 SCIE CAS 2025年第4期917-935,共19页
Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The ... Epilepsy is a severe,relapsing,and multifactorial neurological disorder.Studies regarding the accurate diagnosis,prognosis,and in-depth pathogenesis are crucial for the precise and effective treatment of epilepsy.The pathogenesis of epilepsy is complex and involves alterations in variables such as gene expression,protein expression,ion channel activity,energy metabolites,and gut microbiota composition.Satisfactory results are lacking for conventional treatments for epilepsy.Surgical resection of lesions,drug therapy,and non-drug interventions are mainly used in clinical practice to treat pain associated with epilepsy.Non-pharmacological treatments,such as a ketogenic diet,gene therapy for nerve regeneration,and neural regulation,are currently areas of research focus.This review provides a comprehensive overview of the pathogenesis,diagnostic methods,and treatments of epilepsy.It also elaborates on the theoretical basis,treatment modes,and effects of invasive nerve stimulation in neurotherapy,including percutaneous vagus nerve stimulation,deep brain electrical stimulation,repetitive nerve electrical stimulation,in addition to non-invasive transcranial magnetic stimulation and transcranial direct current stimulation.Numerous studies have shown that electromagnetic stimulation-mediated neuromodulation therapy can markedly improve neurological function and reduce the frequency of epileptic seizures.Additionally,many new technologies for the diagnosis and treatment of epilepsy are being explored.However,current research is mainly focused on analyzing patients’clinical manifestations and exploring relevant diagnostic and treatment methods to study the pathogenesis at a molecular level,which has led to a lack of consensus regarding the mechanisms related to the disease. 展开更多
关键词 DIAGNOSIS drug treatment ELECTROENCEPHALOGRAPHY epilepsy monitoring EPILEPSY nerve regeneration NEUROSTIMULATION non-drug interventions pathogenesis prediction
下载PDF
Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders:progress of experimental models based on disease pathogenesis
2
作者 Li Xu Huiming Xu Changyong Tang 《Neural Regeneration Research》 SCIE CAS 2025年第2期354-365,共12页
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem... Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials. 展开更多
关键词 AQUAPORIN-4 experimental model neuromyelitis optica spectrum disorder pathogenesis
下载PDF
Glycolytic dysregulation in Alzheimer's disease:unveiling new avenues for understanding pathogenesis and improving therapy
3
作者 You Wu Lijie Yang +2 位作者 Wanrong Jiang Xinyuan Zhang Zhaohui Yao 《Neural Regeneration Research》 SCIE CAS 2025年第8期2264-2278,共15页
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on choli... Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments.The current therapeutic strategies,primarily based on cholinesterase inhibitors and N-methyl-Daspartate receptor antagonists,offer limited symptomatic relief without halting disease progression,highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease.Recent studies have provided insights into the critical role of glycolysis,a fundamental energy metabolism pathway in the brain,in the pathogenesis of Alzheimer's disease.Alterations in glycolytic processes within neurons and glial cells,including microglia,astrocytes,and oligodendrocytes,have been identified as significant contributors to the pathological landscape of Alzheimer's disease.Glycolytic changes impact neuronal health and function,thus offering promising targets for therapeutic intervention.The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression.Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments,emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease glial cells GLYCOLYSIS neuronal metabolism pathogenesis therapeutic targets
下载PDF
New exploration on pathogenesis and early diagnosis of gestational diabetes
4
作者 Hua Bai 《World Journal of Clinical Cases》 SCIE 2025年第1期1-5,共5页
Gestational diabetes mellitus(GDM)refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients pre-viously diagnosed with diabetes.GDM is a unique among the four subtypes ... Gestational diabetes mellitus(GDM)refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients pre-viously diagnosed with diabetes.GDM is a unique among the four subtypes of diabetes classified by the international World Health Organization standards.Although GDM patients constitute a small proportion of the total number of diabetes cases,the incidence of GDM has risen significantly over the past decade,posing substantial risk to pregnant women and infants.Therefore,it warrants considerable attention.The pathogenesis of GDM is generally considered to resemble that of type II diabetes,though it may have distinct characteristics.Analyzing blood biochemical proteins in the context of GDM can help elucidate its pathogenesis,thereby facilitating more effective prevention and management strategies.This article reviews this critical clinical issue to enhance the medical community's sufficient understanding of GDM. 展开更多
关键词 Gestational diabetes mellitus pathogenesis PROTEOMICS RBP4 ANGPTL8
下载PDF
Gut virome:New key players in the pathogenesis of inflammatory bowel disease
5
作者 Helal F Hetta Rehab Ahmed +4 位作者 Yasmin N Ramadan Hayam Fathy Mohammed Khorshid Mohamed M Mabrouk Mai Hashem 《World Journal of Methodology》 2025年第2期27-43,共17页
Inflammatory bowel disease(IBD)is a chronic inflammatory illness of the intes-tine.While the mechanism underlying the pathogenesis of IBD is not fully under-stood,it is believed that a complex combination of host immu... Inflammatory bowel disease(IBD)is a chronic inflammatory illness of the intes-tine.While the mechanism underlying the pathogenesis of IBD is not fully under-stood,it is believed that a complex combination of host immunological response,environmental exposure,particularly the gut microbiota,and genetic suscept-ibility represents the major determinants.The gut virome is a group of viruses found in great frequency in the gastrointestinal tract of humans.The gut virome varies greatly among individuals and is influenced by factors including lifestyle,diet,health and disease conditions,geography,and urbanization.The majority of research has focused on the significance of gut bacteria in the progression of IBD,although viral populations represent an important component of the microbiome.We conducted this review to highlight the viral communities in the gut and their expected roles in the etiopathogenesis of IBD regarding published research to date. 展开更多
关键词 Inflammatory bowel disease pathogenesis Gut virome BACTERIOPHAGE Eukaryotic viruses
下载PDF
Pathogenesis and clinical management of arboviral diseases
6
作者 Victoria Cenci Dietrich Juan Marcos Caram Costa +5 位作者 Marina Maria Gomes Leite Oliveira Carlos Eduardo Oliveira Aguiar Luis Guilherme de Oliveira Silva Marcel Silva Luz Fabian Fellipe Bueno Lemos Fabrício Freire de Melo 《World Journal of Virology》 2025年第1期9-50,共42页
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods,such as mosquitoes,often causing a variety of pathologies associated with high levels of morbidity and mortality.Over the p... Arboviral diseases are viral infections transmitted to humans through the bites of arthropods,such as mosquitoes,often causing a variety of pathologies associated with high levels of morbidity and mortality.Over the past decades,these infections have proven to be a significant challenge to health systems worldwide,particularly following the considerable geographic expansion of the dengue virus(DENV)and its most recent outbreak in Latin America as well as the difficult-tocontrol outbreaks of yellow fever virus(YFV),chikungunya virus(CHIKV),and Zika virus(ZIKV),leaving behind a substantial portion of the population with complications related to these infections.Currently,the world is experiencing a period of intense globalization,which,combined with global warming,directly contributes to wider dissemination of arbovirus vectors across the globe.Consequently,all continents remain on high alert for potential new outbreaks.Thus,this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today(DENV,ZIKV,YFV,and CHIKV)discussing their viral characteristics,immune responses,and mechanisms of viral evasion,as well as important clinical aspects for patient management.This includes associated symptoms,laboratory tests,treatments,existing or developing vaccines and the main associated complications,thus integrating a broad historical,scientific and clinical approach. 展开更多
关键词 ARBOVIRUSES Arbovirus infections DENGUE Zika virus Yellow fever Chikungunya virus Clinical diagnosis pathogenesis FLAVIVIRUS Togaviridae infections
下载PDF
Gut flora in multiple sclerosis:implications for pathogenesis and treatment 被引量:2
7
作者 Weiwei Zhang Ying Wang +2 位作者 Mingqin Zhu Kangding Liu Hong-Liang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1480-1488,共9页
Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow d... Multiple sclerosis is an inflammatory disorder chara cterized by inflammation,demyelination,and neurodegeneration in the central nervous system.Although current first-line therapies can help manage symptoms and slow down disease progression,there is no cure for multiple sclerosis.The gut-brain axis refers to complex communications between the gut flo ra and the immune,nervous,and endocrine systems,which bridges the functions of the gut and the brain.Disruptions in the gut flora,termed dys biosis,can lead to systemic inflammation,leaky gut syndrome,and increased susceptibility to infections.The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors,and gut flora may play a pivotal role in regulating immune responses related to multiple scle rosis.To develop more effective therapies for multiple scle rosis,we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis.This review provides an overview of the role of the gut flora in multiple scle rosis. 展开更多
关键词 gut flora gut-brain axis multiple sclerosis pathogenesis treatment
下载PDF
NLRP3 inflammasome plays a vital role in the pathogenesis of age-related diseases in the eye and brain 被引量:1
8
作者 Jack Jonathan Maran Odunayo Omolola Mugisho 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1425-1426,共2页
Key points:With aging,there is increased nucleotide-binding oligomerization domain-(NOD-)like receptor(NLR) protein-3(NLRP3) activation in neural and ocular tissues.Activation of the NLRP3 inflammasome appears to be a... Key points:With aging,there is increased nucleotide-binding oligomerization domain-(NOD-)like receptor(NLR) protein-3(NLRP3) activation in neural and ocular tissues.Activation of the NLRP3 inflammasome appears to be a common denominator in the pathogenesis of age-related diseases of the eye and brain.Pharmacological inhibition of the NLRP3 inflammasome may be a potent therapy for preventing the development and progression of age-related eye and brain diseases. 展开更多
关键词 NLRP3 pathogenesis inflam
下载PDF
Classifying rockburst with confidence:A novel conformal prediction approach 被引量:2
9
作者 Bemah Ibrahim Isaac Ahenkorah 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期51-64,共14页
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses... The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence. 展开更多
关键词 ROCKBURST Machine learning Uncertainty quantification Conformal prediction
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:3
10
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Exploring the autophagy-related pathogenesis of active ulcerative colitis 被引量:1
11
作者 Zhuo-Zhi Gong Teng Li +5 位作者 He Yan Min-Hao Xu Yue Lian Yi-Xuan Yang Wei Wei Tao Liu 《World Journal of Clinical Cases》 SCIE 2024年第9期1622-1633,共12页
BACKGROUND The pathogenesis of ulcerative colitis(UC)is complex,and recent therapeutic advances remain unable to fully alleviate the condition.AIM To inform the development of novel UC treatments,bioinformatics was us... BACKGROUND The pathogenesis of ulcerative colitis(UC)is complex,and recent therapeutic advances remain unable to fully alleviate the condition.AIM To inform the development of novel UC treatments,bioinformatics was used to explore the autophagy-related pathogenesis associated with the active phase of UC.METHODS The GEO database was searched for UC-related datasets that included healthy controls who met the screening criteria.Differential analysis was conducted to obtain differentially expressed genes(DEGs).Au-tophagy-related targets were collected and intersected with the DEGs to identiy differentially expressed autophagy-related genes(DEARGs)associated with active UC.DEARGs were then subjected to KEGG,GO,and DisGeNET disease enrichment analyses using R software.Differential analysis of immune infiltrating cells was performed using the CiberSort algorithm.The least absolute shrinkage and selection operator algorithm and protein-protein interaction network were used to narrow down the DEARGs,and the top five targets in the Dgree ranking were designated as core targets.RESULTS A total of 4822 DEGs were obtained,of which 58 were classified as DEARGs.SERPINA1,BAG3,HSPA5,CASP1,and CX3CL1 were identified as core targets.GO enrichment analysis revealed that DEARGs were primarily enriched in processes related to autophagy regulation and macroautophagy.KEGG enrichment analysis showed that DEARGs were predominantly associated with NOD-like receptor signaling and other signaling pathways.Disease enrichment analysis indicated that DEARGs were significantly linked to diseases such as malignant glioma and middle cerebral artery occlusion.Immune infiltration analysis demonstrated a higher presence of immune cells like activated memory CD4 T cells and follicular helper T cells in active UC patients than in healthy controls.CONCLUSION Autophagy is closely related to the active phase of UC and the potential targets obtained from the analysis in this study may provide new insight into the treatment of active UC patients. 展开更多
关键词 Ulcerative colitis AUTOPHAGY BIOINFORMATIC TARGETS pathogenesis
下载PDF
A Physics-informed Deep-learning Intensity Prediction Scheme for Tropical Cyclones over the Western North Pacific 被引量:1
12
作者 Yitian ZHOU Ruifen ZHAN +4 位作者 Yuqing WANG Peiyan CHEN Zhemin TAN Zhipeng XIE Xiuwen NIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1391-1402,共12页
Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a ti... Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts. 展开更多
关键词 tropical cyclones western North Pacific intensity prediction EBDS LSTM
下载PDF
Prediction of treatment response to antipsychotic drugs for precision medicine approach to schizophrenia:randomized trials and multiomics analysis 被引量:1
13
作者 Liang-Kun Guo Yi Su +24 位作者 Yu-Ya-Nan Zhang Hao Yu Zhe Lu Wen-Qiang Li Yong-Feng Yang Xiao Xiao Hao Yan Tian-Lan Lu Jun Li Yun-Dan Liao Zhe-Wei Kang Li-Fang Wang Yue Li Ming Li Bing Liu Hai-Liang Huang Lu-Xian Lv Yin Yao Yun-Long Tan Gerome Breen Ian Everall Hong-Xing Wang Zhuo Huang Dai Zhang Wei-Hua Yue 《Military Medical Research》 SCIE CAS CSCD 2024年第1期19-33,共15页
Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack ... Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013). 展开更多
关键词 SCHIZOPHRENIA Antipsychotic drug Treatment response prediction model GENETICS EPIGENETICS
下载PDF
ST-LSTM-SA:A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning 被引量:1
14
作者 Hanxiao YUAN Yang LIU +3 位作者 Qiuhua TANG Jie LI Guanxu CHEN Wuxu CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1364-1378,共15页
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia... The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables. 展开更多
关键词 sound velocity field spatiotemporal prediction deep learning self-allention
下载PDF
Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method 被引量:2
15
作者 Faming Huang Zuokui Teng +4 位作者 Chi Yao Shui-Hua Jiang Filippo Catani Wei Chen Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期213-230,共18页
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a... In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors. 展开更多
关键词 Landslide susceptibility prediction Conditioning factor errors Low-pass filter method Machine learning models Interpretability analysis
下载PDF
Time series prediction of reservoir bank landslide failure probability considering the spatial variability of soil properties 被引量:2
16
作者 Luqi Wang Lin Wang +3 位作者 Wengang Zhang Xuanyu Meng Songlin Liu Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3951-3960,共10页
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab... Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models. 展开更多
关键词 Machine learning(ML) Reservoir bank landslide Spatial variability Time series prediction Failure probability
下载PDF
Ground threat prediction-based path planning of unmanned autonomous helicopter using hybrid enhanced artificial bee colony algorithm 被引量:1
17
作者 Zengliang Han Mou Chen +1 位作者 Haojie Zhu Qingxian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期1-22,共22页
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro... Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method. 展开更多
关键词 UAH Path planning Ground threat prediction Hybrid enhanced Collaborative thinking
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:2
18
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR Short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
Assessments of Data-Driven Deep Learning Models on One-Month Predictions of Pan-Arctic Sea Ice Thickness 被引量:1
19
作者 Chentao SONG Jiang ZHU Xichen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1379-1390,共12页
In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,ma... In recent years,deep learning methods have gradually been applied to prediction tasks related to Arctic sea ice concentration,but relatively little research has been conducted for larger spatial and temporal scales,mainly due to the limited time coverage of observations and reanalysis data.Meanwhile,deep learning predictions of sea ice thickness(SIT)have yet to receive ample attention.In this study,two data-driven deep learning(DL)models are built based on the ConvLSTM and fully convolutional U-net(FC-Unet)algorithms and trained using CMIP6 historical simulations for transfer learning and fine-tuned using reanalysis/observations.These models enable monthly predictions of Arctic SIT without considering the complex physical processes involved.Through comprehensive assessments of prediction skills by season and region,the results suggest that using a broader set of CMIP6 data for transfer learning,as well as incorporating multiple climate variables as predictors,contribute to better prediction results,although both DL models can effectively predict the spatiotemporal features of SIT anomalies.Regarding the predicted SIT anomalies of the FC-Unet model,the spatial correlations with reanalysis reach an average level of 89%over all months,while the temporal anomaly correlation coefficients are close to unity in most cases.The models also demonstrate robust performances in predicting SIT and SIE during extreme events.The effectiveness and reliability of the proposed deep transfer learning models in predicting Arctic SIT can facilitate more accurate pan-Arctic predictions,aiding climate change research and real-time business applications. 展开更多
关键词 Arctic sea ice thickness deep learning spatiotemporal sequence prediction transfer learning
下载PDF
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:2
20
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 Landslide susceptibility prediction Random landslide position errors Uncertainty analysis Multi-layer perceptron Random forest Semi-supervised machine learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部