Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect no...Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect normal fruit growth and reduce fruit quality and yield.We took five-year-old Ruixue’(Qinfu 1×Pink Lady;CNA20151469.1) fruits as test materials,and the ambient temperature during fruit development was monitored.The results showed that during the fruit-growing season,especially during the rapid growth stage (July to August),the maximum daily temperature exceeded 30℃ and lasted for more than 40 days.To determine the effects of high temperature stress on the apple fruit resistance,we treated expanding,veraison,and maturity-period fruits at different temperatures.It was found that the fruits of the expanding period showed strong resistance to high temperature stress,whereas during veraison and maturity,fruit resistance to high temperature stress decreased,and the fruit peel browning phenotype appeared.Meanwhile,the content of malonaldehyde (MDA),hydrogen peroxide (H_(2)O_(2)),and superoxide anion (O._(2)^(-)) in the peel gradually increased with increasing temperature.The content of total phenols,flavanol,and flavonoids in the peel decreased substantially at 45℃.Moreover,it was found that polyphenol oxidase gene (MdPPO1) was most sensitive to high temperature stress in apple.Furthermore,transient and stable MdPPO1 overexpression significantly promoted peel browning.The transgenic materials were more sensitive to high temperatures,and browning was more severe compared to non-genetically modified organism (WT).Stable MdPPO1 knockout calli obtained via clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) gene knockout technology reduced the browning phenotype,and the resultant fruits were not sensitive to the effects of high temperature stress.Thus,MdPPO1 expression may be a key factor of high temperature-related changes observed in the browning phenotype that provides a scientific theoretical basis for the selection of high temperature-resistant varieties and apple cultivation and management in the future.展开更多
BACKGROUND Diabetic macular edema(DME),a chronic microvascular complication of diabetes,is a leading cause of visual impairment and blindness.Pars plana vitrectomy(PPV)can restore the normal macular structure and redu...BACKGROUND Diabetic macular edema(DME),a chronic microvascular complication of diabetes,is a leading cause of visual impairment and blindness.Pars plana vitrectomy(PPV)can restore the normal macular structure and reduce macular edema,whereas internal limiting membrane(ILM)peeling is used to treat tractional macular diseases.Despite the advantages,there is limited research on the combined effects of PPV with ILM peeling.AIM To observe the effects of PPV combined with ILM peeling on postoperative central macular thickness(CMT),best-corrected visual acuity(BCVA),cystoid macular edema(CME)volume,and complications in patients with DME.METHODS Eighty-one patients(92 eyes)diagnosed with DME at the Beijing Shanqu Liangxiang Hospital between January and December 2022 were randomly divided to undergo PPV alone(control group:41 patients,47 eyes)or PPV+ILM peeling(stripping group:40 patients,45 eyes);a single surgeon performed all surgeries.The two groups were compared preoperatively and 1 and 3 months postoperatively.RESULTS Preoperatively,both groups had comparable values of CMT,BCVA,and CME volume(P>0.05).After surgery(both 1 and 3 months),both groups showed significant reductions in CMT,BCVA,and CME volume compared to preoperative levels,with the stripping group showing more significant reductions compared to the control group(P<0.05).Further repeated-measures ANOVA analysis for within-group differences revealed significant effects of group and time,and interaction effects for CMT,BCVA,and CME volume(P<0.05).There were no significant differences in the incidence of complications between the groups(retinal detachment:control=2,stripping=1;endophthalmitis:Control=4,stripping=1;no cases of secondary glaucoma or macular holes;χ^(2)=0.296,P=0.587).CONCLUSION PPV with ILM peeling can significantly improve the visual acuity of patients with DME,reduce CMT,and improve CME with fewer complications.展开更多
Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the ve...Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.展开更多
The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ...The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.展开更多
The production and consumption of avocado pears generates tons of wastes, mainly the pear peels which are usually discarded, although they have been reported to contain important phyto-chemicals with biological activi...The production and consumption of avocado pears generates tons of wastes, mainly the pear peels which are usually discarded, although they have been reported to contain important phyto-chemicals with biological activities. The adverse health effect associated with the consumption of saturated lipid based foods has ignited research on reformulation of lipid based foods to eliminate Trans Fatty Acids (TFAs). This study was thus aimed at the extraction and characterization of oil from Avocado Peels (APO) and evaluation of the quality of margarine produced from it. Five verities of pear were used for oil extraction by soxhlet method and physiochemical, oxidative, functional and antioxidant characterization was done. Margarines were formulated using a central composite design using oil blends of APO and Virgin Coconut Oil (VCO) with an oil ratio of 10:90, 40:60, 70:30 respectively, varied blending speed, blending time, and chitosan concentration. Samples were characterized and the effect of process parameters on the physiochemical and functional properties of the margarine studied. Optimized conditions were used to produce samples for sensory evaluation. Color, spreadability, aroma, taste and general acceptability was evaluated using ranking difference test. The results showed that the yield, density, and iodine values of APOs oils ranged from 14.91 ± 0.18 to 11.76 ± 0.46;0.93 ± 0.001 to 0.99 ± 0.1;46.63 ± 1.70 to 52.4 ± 0.63, their acid values, TBA and PV values ranged from 1.42 ± 0.39 to 1.97 ± 0.5;0.11 ± 0.002 to 0.18 ± 0.04;and 2.72 ± 0.14 to 4.43 ± 0.36 respectively, with Brogdon avocado peel variety having the overall best properties prepared blends of trans-free APO margarines showed that increase in APO ratio decreased melting point, increased oxidative stability and reduced moisture content of margarine samples. Chitosan addition leads to decrease moisture content and increase functional properties. VCO lead to increase in phenolic and flavonoid content of the margarines. Samples were spreadable and palatable with R20 being most palatable and the most accepted being R26 with a mean score of 7.07 ± 0.70. Decrease in color intensity increased acceptability. This study therefore demonstrated that avocado peel waste biomass can be valorized by using it as raw material for oil extraction, which can serve as good material for the production of trans-free margarines with good oxidative stability, functional and antioxidant properties.展开更多
A novel adsorbent was prepared by modifying orange peel with sodium hydroxide and calcium chloride. The morphological and characteristics of the adsorbent were evaluated by infrared spectroscopy (IR), scanning elect...A novel adsorbent was prepared by modifying orange peel with sodium hydroxide and calcium chloride. The morphological and characteristics of the adsorbent were evaluated by infrared spectroscopy (IR), scanning electron microscopy (SEM) and N2-adsorption techniques. The adsorption behavior of Cu^2+, Pb^2+ and Zn^2+ on modified orange peel (SCOP) was studied by varying parameters like pH, initial concentration of metal ions. Equilibrium was well described by Langmuir equation with the maximum adsorption capacities for Cu^2+, Pb^2+ and Zn^2+ of 70.73, 209.8 and 56.18 mg/g, respectively. Based on the results obtained in batch experiments, breakthrough profiles were examined using a column packed with SCOP for the separation of small concentration of Pb^2+ from an excess of Zn^2+ followed by elution tests. Ion exchange with Ca^2+ neutralizing the carboxyl groups of the pectin was found to be the predominant mechanism.展开更多
[Objective] The aim was to study the antioxidant effect of polyphenols from pomegranate peel in vivo. [Method] The Kunming rats were randomly divided into a control group, a low-dose group, a middle-dose group and a h...[Objective] The aim was to study the antioxidant effect of polyphenols from pomegranate peel in vivo. [Method] The Kunming rats were randomly divided into a control group, a low-dose group, a middle-dose group and a high-dose group,n=10; the protein content, the activities of the superoxide dismutase(SOD) and the glutathione peroxidase(GSH-PX), the content of the maleic dialdehyde(MDA) in serum and liver tissue of the rats from different groups were determined. [Result]The polyphenols of pomegranate peel could increase protein content, activities of superoxide dismutase(SOD) and glutathione peroxidase(GSH-PX) in serum and liver tissue, and decrease the maleic dialdehyde(MDA) content simultaneously. [Conclusion] Polyphenols of pomegranate peel have strong antioxidant activity in vivo.展开更多
[Objective] This study aimed to optimize the chromatographic conditions for detecting ellagic acid in pomegranate peels using HPLC method. [Method] By using 0.2 mg/ml ellagic acid standard solution, on the basis of si...[Objective] This study aimed to optimize the chromatographic conditions for detecting ellagic acid in pomegranate peels using HPLC method. [Method] By using 0.2 mg/ml ellagic acid standard solution, on the basis of single-factor experiment and orthogonal experiment, chromatographic conditions (mobile phase ratio, flow rate, col- umn temperature) for detecting ellagic acid using HPLC were optimized. Based on the optimal chromatographic conditions, the ellagic acid content in experimental pomegranate peels was determined. [Resull] The optimal chromatographic conditions for detecting ellagic acid in pomegranate peels using HPLC method are: 1.2% phos- phoric acid:acetonitrile=85:15, column temperature of 35 ℃, and flow rate of 1.0 ml/min. The linear regression equation of ellagic acid is: y=2.9e+0.6x+4.4e+5 (FF=9 999). Ac- cording to the standard addition recovery test, the average recovery rate of ellagic acid is 98.20%, and RSD is 0.60%. Under above optimized chromatographic condi- tions, ellagic acid can be well separated from other interfering components in pomegranate peels, with shorter peak time and ideal effect, which is convenient for the detection in production practices. [Conclusion] This study laid the foundation for detecting ellagic acid in pomegranate peels using HPLC method.展开更多
[Objective] The aim was to obtain the preparation technology of the pomegranate peel polyphenol nanoemulsion. [Method] The pomegranate peel polyphe- nol nanoemulsion was prepared by the titration methods and the pseud...[Objective] The aim was to obtain the preparation technology of the pomegranate peel polyphenol nanoemulsion. [Method] The pomegranate peel polyphe- nol nanoemulsion was prepared by the titration methods and the pseudo ternary dia- gram. The effect of various elements on the formation of the nanoemulsion was stud- ied. [Results] The optimal prescription of the pomegranate peel polyphenol nanoemul- sion was 4.4%(w/w) of pomegranate peel polyphenol, 34.1%(w/w) of EL-40, 17.1%(w/w) of anhydrous ethanol, 5.7%(w/w) of IPM and 38.7%(w/w) of distilled water. [Conclusion] It is feasible to produce the pomegranate peel polyphenol nanoemulsion by the titration methods and the pseudo ternary diagram. It consists of pomegranate peel polyphe- nol, EL-40, anhydrous ethanol, IPM and distilled water. There is 4.4%(w/w) of the pomegranate peel polyphenol in the nanoemuJsion.展开更多
[Objective] This study aimed to investigate the differences in chemical composition of supercritical CO2 extraction products in peels of Trichosanthes kirilowii Maxim. from Changqing district. [Method] Supercritical f...[Objective] This study aimed to investigate the differences in chemical composition of supercritical CO2 extraction products in peels of Trichosanthes kirilowii Maxim. from Changqing district. [Method] Supercritical fluidextraction (SFE) and GCMS method were applied to determine and analyze the chemical components of the extracts in peels of three strains of Trichosanthes kirilowii Maxim. [Result] The chemical components of supercritical CO2 extraction products in peels of three strains of Trichosanthes kirilowii Maxim. varied., and the number of chemical components with normalized percentage content higher than 1% was 5, 7 and 8, respectively. There are 14 kinds of common components, and the relative content of hexadecanoic acid was the highest. [Conclusion] Supercritical CO2 extracts in peels of different strains of Trichosanthes kirilowii Maxim. contain different chemical components, providing scientific basis for breeding excellent varieties and the development and utilization of Trichosanthes kirilowii Maxim.展开更多
[Objective] This study aimed to determine the optimal process conditions for extraction of anti-allergic active ingredient from citrus peels. [Method] Crude anti- allergic active extracts of citrus peels were extracte...[Objective] This study aimed to determine the optimal process conditions for extraction of anti-allergic active ingredient from citrus peels. [Method] Crude anti- allergic active extracts of citrus peels were extracted. Effects of extraction conditions including extraction temperature, ethanol concentration, extraction time and liquid-to-solid ratio on extraction were explored with single-factor experiment, and the extrac- tion process was optimized with orthogonal experiment. [Result] Based on the single- factor experiment and orthogonal experiment, the optimal extraction condition for crude anti-allergic active extracts of citrus peels were determined to be under extraction temperature of 60℃, ethanol concentration of 70%, extraction time of 60 min, liquid-to-solid ratio of 1:25 and twice extraction. [Concluslon] This process condition is of simple operation and high extraction efficiency, which is environment-friendly and suitable for the extraction of crude anti-allergic active extracts from citrus peels. This study provided a new approach and research ideas for the effective and rapid extraction of anti-allergic active ingredient in citrus peels.展开更多
[Objective] This study aimed to measure the hesperidin content in citrus peel by high performance liquid chromatography, to provide a scientific basis for quality control and identification. [Method] The hesperidin wa...[Objective] This study aimed to measure the hesperidin content in citrus peel by high performance liquid chromatography, to provide a scientific basis for quality control and identification. [Method] The hesperidin was extracted with alkaline solution at 70 ~C and pH 6-7, and the purity of hesperidin was determined by HPLC. [Result] The formula for the regression line was Y=466,097Xq3.415 0 (r=0.999 6), identify- ing the relationship between hesperidin concentration and peak area, and the linear range was 0.2-1.4μg. The hesperidin solution was stable within 24 h at room temperature. The average recovery rate of hesperidin was 98.41%. [Conclusion] The HPLC method is rapid, simple, and with good linear relationship, can be used for routine analysis of hesperidin.展开更多
Heavy metal polluted water threatens the integrity of ecosystem.The use of agricultural waste as adsorbent becomes popular due to its biodegradability and availability.However,limited research works has been done to p...Heavy metal polluted water threatens the integrity of ecosystem.The use of agricultural waste as adsorbent becomes popular due to its biodegradability and availability.However,limited research works has been done to process agricultural waste for heavy metal adsorption purpose.The objective of this study is to propose a new approach to treat banana peel using ZnCl_(2) prior to alkali and acid treatment and explore the potential of dragon fruit peels as the adsorbent for Cu^(2+)adsorption.Seven adsorption isotherm was adopted to identify the adsorption mechanism and four statistical parameters were calculated for model verification purpose.The experiment was conducted by dispersing ZnCl_(2) treated and untreated adsorbents into Cu^(2+) solution.Results showed that ZnCl_(2) treated adsorbents performed better in terms of Cu^(2+) removal compared with untreated adsorbents due to higher surface area for Cu^(2+) adsorption.The treated banana peel(Act.-B)performed approximately 30%better than the treated dragon fruit peel(Act.-D)due to the presence of hydroxyl and carboxyl groups.The equilibrium adsorptive capacity of Act.-B was 1872.8 mg Cu^(2+)/g and the experimental data fitted Freundlich isotherm well with R^(2)=0.9978,0.0161 of residual sum of error(SSE),0.0068 of χ^(2),and 0.0567 of root mean square error(RMSE)values.This suggests non⁃linear adsorption and multilayer adsorption on heterogenous surfaces.Thus,it is recommended to further improve the surface properties of Act.-B by steam pyrolysis and surface modification.展开更多
基金supported by China Agriculture Research System of MOF and MARA (Grant No.CARS-27)the Fundamental Research Funds for the Central Universities (Grant No.2452020033)Shaanxi Engineering Research Center of Apple。
文摘Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect normal fruit growth and reduce fruit quality and yield.We took five-year-old Ruixue’(Qinfu 1×Pink Lady;CNA20151469.1) fruits as test materials,and the ambient temperature during fruit development was monitored.The results showed that during the fruit-growing season,especially during the rapid growth stage (July to August),the maximum daily temperature exceeded 30℃ and lasted for more than 40 days.To determine the effects of high temperature stress on the apple fruit resistance,we treated expanding,veraison,and maturity-period fruits at different temperatures.It was found that the fruits of the expanding period showed strong resistance to high temperature stress,whereas during veraison and maturity,fruit resistance to high temperature stress decreased,and the fruit peel browning phenotype appeared.Meanwhile,the content of malonaldehyde (MDA),hydrogen peroxide (H_(2)O_(2)),and superoxide anion (O._(2)^(-)) in the peel gradually increased with increasing temperature.The content of total phenols,flavanol,and flavonoids in the peel decreased substantially at 45℃.Moreover,it was found that polyphenol oxidase gene (MdPPO1) was most sensitive to high temperature stress in apple.Furthermore,transient and stable MdPPO1 overexpression significantly promoted peel browning.The transgenic materials were more sensitive to high temperatures,and browning was more severe compared to non-genetically modified organism (WT).Stable MdPPO1 knockout calli obtained via clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) gene knockout technology reduced the browning phenotype,and the resultant fruits were not sensitive to the effects of high temperature stress.Thus,MdPPO1 expression may be a key factor of high temperature-related changes observed in the browning phenotype that provides a scientific theoretical basis for the selection of high temperature-resistant varieties and apple cultivation and management in the future.
基金Youth Project of Liangxiang Hospital Fangshan District Beijing,No.2022-11.
文摘BACKGROUND Diabetic macular edema(DME),a chronic microvascular complication of diabetes,is a leading cause of visual impairment and blindness.Pars plana vitrectomy(PPV)can restore the normal macular structure and reduce macular edema,whereas internal limiting membrane(ILM)peeling is used to treat tractional macular diseases.Despite the advantages,there is limited research on the combined effects of PPV with ILM peeling.AIM To observe the effects of PPV combined with ILM peeling on postoperative central macular thickness(CMT),best-corrected visual acuity(BCVA),cystoid macular edema(CME)volume,and complications in patients with DME.METHODS Eighty-one patients(92 eyes)diagnosed with DME at the Beijing Shanqu Liangxiang Hospital between January and December 2022 were randomly divided to undergo PPV alone(control group:41 patients,47 eyes)or PPV+ILM peeling(stripping group:40 patients,45 eyes);a single surgeon performed all surgeries.The two groups were compared preoperatively and 1 and 3 months postoperatively.RESULTS Preoperatively,both groups had comparable values of CMT,BCVA,and CME volume(P>0.05).After surgery(both 1 and 3 months),both groups showed significant reductions in CMT,BCVA,and CME volume compared to preoperative levels,with the stripping group showing more significant reductions compared to the control group(P<0.05).Further repeated-measures ANOVA analysis for within-group differences revealed significant effects of group and time,and interaction effects for CMT,BCVA,and CME volume(P<0.05).There were no significant differences in the incidence of complications between the groups(retinal detachment:control=2,stripping=1;endophthalmitis:Control=4,stripping=1;no cases of secondary glaucoma or macular holes;χ^(2)=0.296,P=0.587).CONCLUSION PPV with ILM peeling can significantly improve the visual acuity of patients with DME,reduce CMT,and improve CME with fewer complications.
文摘Green synthesis of silver nanoparticles (AgNPs) using aqueous extracts of orange and lemon peels, as a reducing agent, and silver nitrate salts as a source of silver ions is a promising field of research due to the versatility of biomedical applications of metal nanoparticles. In this paper, AgNPs were synthetized at different reaction parameters such as the type and concentration of the extracts, metal salt concentration, temperature, speed stirring, and pH. The antibacterial properties of the obtained silver nanoparticles against E. coli, as well as the physical and chemical characteristics of the synthesized silver nanoparticles, were investigated. UV-Vis spectroscopy was used to confirm the formation of AgNPs. In addition to green biogenic synthesis, chemical synthesis of silver nanoparticles was also carried out. The optimal temperature for extraction was 65˚C, while for the synthesis of AgNPs was 35˚C. The synthesis is carried out in an acidic environment (pH = 4.7 orange and pH = 3.8 lemon), neutral (pH = 7) and alkaline (pH = 10), then for different concentrations of silver nitrate solution (0.5 mM - 1 mM), optimal time duration of the reaction was 60 min and optimal stirring speed rotation was 250 rpm on the magnetic stirrer. The physical properties of the synthesized silver nanoparticles (conductivity, density and refractive index) were also studied, and the passage of laser light through the obtained solution and distilled water was compared. Positive inhibitory effect on the growth of new Escherichia coli colonies have shown AgNPs synthesized at a basic pH value and at a 0.1 mM AgNO<sub>3</sub> using orange or lemon peel extract, while for a 0.5 mM AgNO<sub>3 </sub>using lemon peel extract.
文摘The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.
文摘The production and consumption of avocado pears generates tons of wastes, mainly the pear peels which are usually discarded, although they have been reported to contain important phyto-chemicals with biological activities. The adverse health effect associated with the consumption of saturated lipid based foods has ignited research on reformulation of lipid based foods to eliminate Trans Fatty Acids (TFAs). This study was thus aimed at the extraction and characterization of oil from Avocado Peels (APO) and evaluation of the quality of margarine produced from it. Five verities of pear were used for oil extraction by soxhlet method and physiochemical, oxidative, functional and antioxidant characterization was done. Margarines were formulated using a central composite design using oil blends of APO and Virgin Coconut Oil (VCO) with an oil ratio of 10:90, 40:60, 70:30 respectively, varied blending speed, blending time, and chitosan concentration. Samples were characterized and the effect of process parameters on the physiochemical and functional properties of the margarine studied. Optimized conditions were used to produce samples for sensory evaluation. Color, spreadability, aroma, taste and general acceptability was evaluated using ranking difference test. The results showed that the yield, density, and iodine values of APOs oils ranged from 14.91 ± 0.18 to 11.76 ± 0.46;0.93 ± 0.001 to 0.99 ± 0.1;46.63 ± 1.70 to 52.4 ± 0.63, their acid values, TBA and PV values ranged from 1.42 ± 0.39 to 1.97 ± 0.5;0.11 ± 0.002 to 0.18 ± 0.04;and 2.72 ± 0.14 to 4.43 ± 0.36 respectively, with Brogdon avocado peel variety having the overall best properties prepared blends of trans-free APO margarines showed that increase in APO ratio decreased melting point, increased oxidative stability and reduced moisture content of margarine samples. Chitosan addition leads to decrease moisture content and increase functional properties. VCO lead to increase in phenolic and flavonoid content of the margarines. Samples were spreadable and palatable with R20 being most palatable and the most accepted being R26 with a mean score of 7.07 ± 0.70. Decrease in color intensity increased acceptability. This study therefore demonstrated that avocado peel waste biomass can be valorized by using it as raw material for oil extraction, which can serve as good material for the production of trans-free margarines with good oxidative stability, functional and antioxidant properties.
基金Project (50774100) supported by the National Natural Science Foundation of China
文摘A novel adsorbent was prepared by modifying orange peel with sodium hydroxide and calcium chloride. The morphological and characteristics of the adsorbent were evaluated by infrared spectroscopy (IR), scanning electron microscopy (SEM) and N2-adsorption techniques. The adsorption behavior of Cu^2+, Pb^2+ and Zn^2+ on modified orange peel (SCOP) was studied by varying parameters like pH, initial concentration of metal ions. Equilibrium was well described by Langmuir equation with the maximum adsorption capacities for Cu^2+, Pb^2+ and Zn^2+ of 70.73, 209.8 and 56.18 mg/g, respectively. Based on the results obtained in batch experiments, breakthrough profiles were examined using a column packed with SCOP for the separation of small concentration of Pb^2+ from an excess of Zn^2+ followed by elution tests. Ion exchange with Ca^2+ neutralizing the carboxyl groups of the pectin was found to be the predominant mechanism.
基金Supported by Scientific Research Projects Units of Science and Technology Department of Xinjiang Uygur Autonomous Region for Financial Support(Project No.2013911072)~~
文摘[Objective] The aim was to study the antioxidant effect of polyphenols from pomegranate peel in vivo. [Method] The Kunming rats were randomly divided into a control group, a low-dose group, a middle-dose group and a high-dose group,n=10; the protein content, the activities of the superoxide dismutase(SOD) and the glutathione peroxidase(GSH-PX), the content of the maleic dialdehyde(MDA) in serum and liver tissue of the rats from different groups were determined. [Result]The polyphenols of pomegranate peel could increase protein content, activities of superoxide dismutase(SOD) and glutathione peroxidase(GSH-PX) in serum and liver tissue, and decrease the maleic dialdehyde(MDA) content simultaneously. [Conclusion] Polyphenols of pomegranate peel have strong antioxidant activity in vivo.
文摘[Objective] This study aimed to optimize the chromatographic conditions for detecting ellagic acid in pomegranate peels using HPLC method. [Method] By using 0.2 mg/ml ellagic acid standard solution, on the basis of single-factor experiment and orthogonal experiment, chromatographic conditions (mobile phase ratio, flow rate, col- umn temperature) for detecting ellagic acid using HPLC were optimized. Based on the optimal chromatographic conditions, the ellagic acid content in experimental pomegranate peels was determined. [Resull] The optimal chromatographic conditions for detecting ellagic acid in pomegranate peels using HPLC method are: 1.2% phos- phoric acid:acetonitrile=85:15, column temperature of 35 ℃, and flow rate of 1.0 ml/min. The linear regression equation of ellagic acid is: y=2.9e+0.6x+4.4e+5 (FF=9 999). Ac- cording to the standard addition recovery test, the average recovery rate of ellagic acid is 98.20%, and RSD is 0.60%. Under above optimized chromatographic condi- tions, ellagic acid can be well separated from other interfering components in pomegranate peels, with shorter peak time and ideal effect, which is convenient for the detection in production practices. [Conclusion] This study laid the foundation for detecting ellagic acid in pomegranate peels using HPLC method.
基金Supported by Scientific Research Projects Units of Science and Technology Department of Xinjiang Uygur Autonomous Region for Financial Support(Project No.2013911072)~~
文摘[Objective] The aim was to obtain the preparation technology of the pomegranate peel polyphenol nanoemulsion. [Method] The pomegranate peel polyphe- nol nanoemulsion was prepared by the titration methods and the pseudo ternary dia- gram. The effect of various elements on the formation of the nanoemulsion was stud- ied. [Results] The optimal prescription of the pomegranate peel polyphenol nanoemul- sion was 4.4%(w/w) of pomegranate peel polyphenol, 34.1%(w/w) of EL-40, 17.1%(w/w) of anhydrous ethanol, 5.7%(w/w) of IPM and 38.7%(w/w) of distilled water. [Conclusion] It is feasible to produce the pomegranate peel polyphenol nanoemulsion by the titration methods and the pseudo ternary diagram. It consists of pomegranate peel polyphe- nol, EL-40, anhydrous ethanol, IPM and distilled water. There is 4.4%(w/w) of the pomegranate peel polyphenol in the nanoemuJsion.
基金Supported by Science and Technology Development Project of Shangdong Province "Study on Standardized Planting of Chinese Herbal Medicines in Central China and Comprehensive Development and Utilization Technology of Bulk Chinese Herbs"(2011BAI06B00)Construction Project of Scientific and Technological Plat form for Quality Control of Genuine Medicinal Materials in Shangdong Province(2008GG-2NS02022)+1 种基金Agricultural Thoroughbred Breeding Project of Shangdong Province(2009LZ01-03)Independent Innovation Project of Universities and Institutes from Science and Technology Bureau of Ji'nan City(200906028)~~
文摘[Objective] This study aimed to investigate the differences in chemical composition of supercritical CO2 extraction products in peels of Trichosanthes kirilowii Maxim. from Changqing district. [Method] Supercritical fluidextraction (SFE) and GCMS method were applied to determine and analyze the chemical components of the extracts in peels of three strains of Trichosanthes kirilowii Maxim. [Result] The chemical components of supercritical CO2 extraction products in peels of three strains of Trichosanthes kirilowii Maxim. varied., and the number of chemical components with normalized percentage content higher than 1% was 5, 7 and 8, respectively. There are 14 kinds of common components, and the relative content of hexadecanoic acid was the highest. [Conclusion] Supercritical CO2 extracts in peels of different strains of Trichosanthes kirilowii Maxim. contain different chemical components, providing scientific basis for breeding excellent varieties and the development and utilization of Trichosanthes kirilowii Maxim.
基金Supported by Analysis and Testing Technology Program of Zhejiang Science and Technology Agency (2007F70027)Xinmiao Talent Program of Zhejiang Province(2008R40G2080020)Hangzhou Science and Technology Program (20091832B50,20101032B18)~~
文摘[Objective] This study aimed to determine the optimal process conditions for extraction of anti-allergic active ingredient from citrus peels. [Method] Crude anti- allergic active extracts of citrus peels were extracted. Effects of extraction conditions including extraction temperature, ethanol concentration, extraction time and liquid-to-solid ratio on extraction were explored with single-factor experiment, and the extrac- tion process was optimized with orthogonal experiment. [Result] Based on the single- factor experiment and orthogonal experiment, the optimal extraction condition for crude anti-allergic active extracts of citrus peels were determined to be under extraction temperature of 60℃, ethanol concentration of 70%, extraction time of 60 min, liquid-to-solid ratio of 1:25 and twice extraction. [Concluslon] This process condition is of simple operation and high extraction efficiency, which is environment-friendly and suitable for the extraction of crude anti-allergic active extracts from citrus peels. This study provided a new approach and research ideas for the effective and rapid extraction of anti-allergic active ingredient in citrus peels.
文摘[Objective] This study aimed to measure the hesperidin content in citrus peel by high performance liquid chromatography, to provide a scientific basis for quality control and identification. [Method] The hesperidin was extracted with alkaline solution at 70 ~C and pH 6-7, and the purity of hesperidin was determined by HPLC. [Result] The formula for the regression line was Y=466,097Xq3.415 0 (r=0.999 6), identify- ing the relationship between hesperidin concentration and peak area, and the linear range was 0.2-1.4μg. The hesperidin solution was stable within 24 h at room temperature. The average recovery rate of hesperidin was 98.41%. [Conclusion] The HPLC method is rapid, simple, and with good linear relationship, can be used for routine analysis of hesperidin.
文摘Heavy metal polluted water threatens the integrity of ecosystem.The use of agricultural waste as adsorbent becomes popular due to its biodegradability and availability.However,limited research works has been done to process agricultural waste for heavy metal adsorption purpose.The objective of this study is to propose a new approach to treat banana peel using ZnCl_(2) prior to alkali and acid treatment and explore the potential of dragon fruit peels as the adsorbent for Cu^(2+)adsorption.Seven adsorption isotherm was adopted to identify the adsorption mechanism and four statistical parameters were calculated for model verification purpose.The experiment was conducted by dispersing ZnCl_(2) treated and untreated adsorbents into Cu^(2+) solution.Results showed that ZnCl_(2) treated adsorbents performed better in terms of Cu^(2+) removal compared with untreated adsorbents due to higher surface area for Cu^(2+) adsorption.The treated banana peel(Act.-B)performed approximately 30%better than the treated dragon fruit peel(Act.-D)due to the presence of hydroxyl and carboxyl groups.The equilibrium adsorptive capacity of Act.-B was 1872.8 mg Cu^(2+)/g and the experimental data fitted Freundlich isotherm well with R^(2)=0.9978,0.0161 of residual sum of error(SSE),0.0068 of χ^(2),and 0.0567 of root mean square error(RMSE)values.This suggests non⁃linear adsorption and multilayer adsorption on heterogenous surfaces.Thus,it is recommended to further improve the surface properties of Act.-B by steam pyrolysis and surface modification.