期刊文献+
共找到990篇文章
< 1 2 50 >
每页显示 20 50 100
The Application of the Nonsplitting Perfectly Matched Layer in Numerical Modeling of Wave Propagation in Poroelastic Media 被引量:4
1
作者 宋若龙 马俊 王克协 《Applied Geophysics》 SCIE CSCD 2005年第4期216-222,共7页
The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this p... The nonsplitting perfectly matched layer (NPML) absorbing boundary condition (ABC) was first provided by Wang and Tang (2003) for the finite-difference simulation of elastic wave propagation in solids. In this paper, the method is developed to extend the NPML to simulating elastic wave propagation in poroelastic media. Biot's equations are discretized and approximated to a staggered-grid by applying a fourth-order accurate central difference in space and a second-order accurate central difference in time. A cylindrical twolayer seismic model and a borehole model are chosen to validate the effectiveness of the NPML. The results show that the numerical solutions agree well with the solutions of the discrete wavenumber (DW) method. 展开更多
关键词 FINITE-DIFFERENCE numerical simulation absorbing boundary condition and perfectly matched layer.
下载PDF
A study of perfectly matched layers for joint multicomponent reverse-time migration 被引量:3
2
作者 杜启振 秦童 +1 位作者 朱钇同 毕丽飞 《Applied Geophysics》 SCIE CSCD 2010年第2期166-173,194,195,共10页
Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equat... Reverse-time migration in finite space requires effective boundary processing technology to eliminate the artificial truncation boundary effect in the migration result.On the basis of the elastic velocity-stress equations in vertical transversely isotropic media and the idea of the conventional split perfectly matched layer(PML),the PML wave equations in reverse-time migration are derived in this paper and then the high order staggered grid discrete schemes are subsequently given.Aiming at the"reflections"from the boundary to the computational domain,as well as the effect of seismic event's abrupt changes at the two ends of the seismic array,the PML arrangement in reverse-time migration is given.The synthetic and real elastic,prestack,multi-component,reverse-time depth migration results demonstrate that this method has much better absorbing effects than other methods and the joint migration produces good imaging results. 展开更多
关键词 perfectly matched layer(PML) absorbing boundary reverse-time migration velocity-stress equation MULTI-COMPONENT
下载PDF
Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations 被引量:3
3
作者 赵建国 史瑞其 《Applied Geophysics》 SCIE CSCD 2013年第3期323-336,359,共15页
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme... The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media. 展开更多
关键词 Absorbing boundary condition elastic wave equation perfectly matched layer finite-element modeling
下载PDF
Effects of Perfectly Correlated and Anti-Correlated Noise in a Logistic Growth Model
4
作者 ZHANG Li CAO Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第3期462-464,共3页
The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary prop... The logistic growth model with correlated additive and multiplicative Gaussian white noise is used to anedyze tumor cell population. The effects of perfectly correlated and anti-correlated noise on the stationary properties of tumor cell population are studied. As in both cases the diffusion coefficient has zero point in real number field, some special features of the system are arisen. It is found that in cause tumor cell extinction. In the perfectly anti-correlated tumor cell population exhibit two extrema. both cases, the increase of the multiplicative noise intensity case, the stationary probability distribution as a function of 展开更多
关键词 logistic growth model perfectly correlated noise perfectly anti-correlated noise
下载PDF
A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves 被引量:3
5
作者 杨皓星 王红霞 《Applied Geophysics》 SCIE CSCD 2013年第1期63-70,118,共9页
When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor refer... When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially trtmcated boundaries. In this paper, a damping factor referred to as the Gaussian dmping factor is proposed. The Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work presents a detailed analysis of the theoretical foundations and advantages of the Gaussian damping factor. Additionally, numerical experiments for the simulation of seismic waves are presented based on two numerical models: a homogeneous model and a multi-layer model. The results show that the proposed factor works better. The Gaussian damping factor achieves a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number of PMLs, and requires less PMLs than other methods to achieve an identical SNR. 展开更多
关键词 simulation of seismic wave perfectly matched layer (PML) damping factor
下载PDF
Perfectly Matched Layer for an Elastic Parabolic Equation Model in Ocean Acoustics 被引量:5
6
作者 XU Chuanxiu ZHANG Haigang +3 位作者 PIAO Shengchun YANG Shi’e SUN Sipeng TANG Jun 《Journal of Ocean University of China》 SCIE CAS CSCD 2017年第1期57-64,共8页
The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze... The perfectly matched layer(PML) is an effective technique for truncating unbounded domains with minimal spurious reflections. A fluid parabolic equation(PE) model applying PML technique was previously used to analyze the sound propagation problem in a range-dependent waveguide(Lu and Zhu, 2007). However, Lu and Zhu only considered a standard fluid PE to demonstrate the capability of the PML and did not take improved one-way models into consideration. They applied a [1/1] Padé approximant to the parabolic equation. The higher-order PEs are more accurate than standard ones when a very large angle propagation is considered. As for range-dependent problems, the techniques to handle the vertical interface between adjacent regions are mainly energy conserving and single-scattering. In this paper, the PML technique is generalized to the higher order elastic PE, as is to the higher order fluid PE. The correction of energy conserving is used in range-dependent waveguides. Simulation is made in both acoustic cases and seismo-acoustic cases. Range-independent and range-dependent waveguides are both adopted to test the accuracy and efficiency of this method. The numerical results illustrate that a PML is much more effective than an artificial absorbing layer(ABL) both in acoustic and seismo-acoustic sound propagation modeling. 展开更多
关键词 ELASTIC PARABOLIC EQUATION perfectly matched LAYER artificial absorbing LAYER
下载PDF
An Adaptive Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems 被引量:4
7
作者 Zhiming Chen Xinming Wu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第2期113-137,共25页
The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in deal- ing with problems involving anisotropic scatterers.In t... The uniaxial perfectly matched layer (PML) method uses rectangular domain to define the PML problem and thus provides greater flexibility and efficiency in deal- ing with problems involving anisotropic scatterers.In this paper an adaptive uniaxial PML technique for solving the time harmonic Helmholtz scattering problem is devel- oped.The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates.The adaptive finite element method based on a posteriori error estimate is proposed to solve the PML equa- tion which produces automatically a coarse mesh size away from the fixed domain and thus makes the total computational costs insensitive to the thickness of the PML absorb- ing layer.Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.In particular,it is demonstrated that the PML layer can be chosen as close to one wave-length from the scatterer and still yields good accuracy and efficiency in approximating the far fields. 展开更多
关键词 Adaptivity uniaxial perfectly matched layer a posteriori error analysis acoustic scattering problems
下载PDF
A Uniaxial Optimal Perfectly Matched Layer Method for Time-harmonic Scattering Problems 被引量:5
8
作者 YANG XIAO-YING MA FU-MING +1 位作者 ZHANG DE-YUE Du XIN-WEI 《Communications in Mathematical Research》 CSCD 2010年第3期255-268,共14页
We develop a uniaxial optimal perfectly matched layer (opt PML) method for solving the time-harmonic scattering problems by choosing a particular absorbing function with unbounded integral in a rectangular domain. W... We develop a uniaxial optimal perfectly matched layer (opt PML) method for solving the time-harmonic scattering problems by choosing a particular absorbing function with unbounded integral in a rectangular domain. With this choice, the solution of the optimal PML problem not only converges exponentially to the solution of the original scatting problem, but also is insensitive to the thickness of the PML layer for sufficiently small parameter ε0. Numerical experiments are included to illustrate the competitive behavior of the proposed optimal method. 展开更多
关键词 uniaxial optimal perfectly matched layer time-harmonic scattering CONVERGENCE
下载PDF
Perfectly matched layer implementation for ADI-FDTD in dispersive media 被引量:2
9
作者 Wang Yu Yuan Naichang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期80-84,共5页
Alternating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and the maximum time step is not limited by the Courant stability condition, but rather by numerical error. Co... Alternating direction implicit finite difference time domain (ADI-FDTD) method is unconditionally stable and the maximum time step is not limited by the Courant stability condition, but rather by numerical error. Compared with the conventional FDTD method, the time step of ADI-FDTD can be enlarged arbitrarily and the CPU cost can be reduced. 2D perfectly matched layer (PML) absorbing boundary condition is proposed to truncate computation space for ADI-FDTD in dispersive media using recursive convolution(RC) method and the 2D PML formulations for dispersive media are derived. ADI-FDTD formulations for dispersive media can be obtained from the simplified PML formulations. The scattering of target in dispersive soil is simulated under sine wave and Gaussian pulse excitations and numerical results of ADI-FDTD with PML are compared with FDTD. Good agreement is observed. At the same time the CPU cost for ADI-FDTD is obviously reduced. 展开更多
关键词 perfectly matched layer alternating direction implicit finite difference time domain dispersive media
下载PDF
An improved convolution perfectly matched layer for elastic second-order wave equation 被引量:2
10
作者 Yang Ling-Yun Wu Guo-Chen +1 位作者 Li Qing-Yang Liang Zhan-Yuan 《Applied Geophysics》 SCIE CSCD 2021年第3期317-330,432,共15页
A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly t... A convolution perfectly matched layer(CPML)can efficiently absorb boundary reflection in numerical simulation.However,the CPML is suitable for the first-order elastic wave equation and is difficult to apply directly to the second-order elastic wave equation.In view of this,based on the first-order CPML absorbing boundary condition,we propose a new CPML(NCPML)boundary which can be directly applied to the second-order wave equation.We first systematically extend the first-order CPML technique into second-order wave equations,neglecting the space-varying characteristics of the partial damping coefficient in the complex-frequency domain,avoiding the generation of convolution in the time domain.We then transform the technique back to the time domain through the inverse Fourier transform.Numerical simulation indicates that the space-varying characteristics of the attenuation factor have little influence on the absorption effect and increase the memory at the same time.A number of numerical examples show that the NCPML proposed in this study is effective in simulating elastic wave propagation,and this algorithm is more efficient and requires less memory allocation than the conventional PML absorbing boundary. 展开更多
关键词 Convolutional perfectly matched layer absorbing boundary conditions second-order elastic wave equation numerical simulation
下载PDF
Application of perfectly matched layer to soil-foundation interaction analysis 被引量:1
11
作者 Mohammad Davoodi Abbas Pourdeilami +1 位作者 Hosein Jahankhah Mohammad Kazem Jafari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期753-768,共16页
Despite of the limitation in modeling infinite space, the finite element method(FEM) is one of the most used tools to numerically study the geotechnical problems regarding the capacity of simulating different geometri... Despite of the limitation in modeling infinite space, the finite element method(FEM) is one of the most used tools to numerically study the geotechnical problems regarding the capacity of simulating different geometries, conditions and material behaviors. A kind of absorbing layer named perfectly matched layer(PML) has been applied to modeling the radiation damping using FEM, which makes the dynamic analysis of soil-structure interaction more accurate. The PML is capable of absorbing incident waves under any angle and frequency, ensuring them to pass through the model boundaries without reflection.In this context, a new FEM program has been written and the PML formula has been implemented by rewriting the dynamic equation of motion and deriving new properties for the quadrilateral elements.The analysis of soil-foundation interaction by applying the PML is validated by the evaluation of impedance/compliance functions for different ground conditions. The results obtained from the PML model match the extended mesh results, even though the domain is small enough that other types of absorbing boundaries can reflect waves back to the foundation. The mechanism of the wave propagation in the region shows that the forced vibrations can be fully absorbed and damped by the boundaries surrounded by PMLs which is the role of radiation damping in FEM modeling. 展开更多
关键词 perfectly matched layer (PML) Finite element method (FEM) Wave propagation Impedance/compliance
下载PDF
Numerical Method for Solving Electromagnetic Wave Scattering by One and Many Small Perfectly Conducting Bodies 被引量:3
12
作者 Nhan T. Tran 《American Journal of Computational Mathematics》 2017年第4期413-434,共22页
In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem ... In this paper, we investigate the problem of electromagnetic (EM) wave scattering by one and many small perfectly conducting bodies and present a numerical method for solving it. For the case of one body, the problem is solved for a body of arbitrary shape, using the corresponding boundary integral equation. For the case of many bodies, the problem is solved asymptotically under the physical assumptions a d a is the characteristic size of the bodies, d is the minimal distance between neighboring bodies, λ = 2π/k is the wave length and k is the wave number. Numerical results for the cases of one and many small bodies are presented. Error analysis for the numerical method is also provided. 展开更多
关键词 Electromagnetic Scattering MANY BODIES perfectly CONDUCTING Body INTEGRAL Equation EM WAVES
下载PDF
Finite Element Analysis in Combination with Perfectly Matched Layer to the Numerical Modeling of Acoustic Devices in Piezoelectric Materials 被引量:1
13
作者 Dbich Karim Sylvain Ballandras +3 位作者 Thierry Laroche Karl Wagner Jean-Michel Brice Xavier Perois 《Applied Mathematics》 2013年第5期64-71,共8页
The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is addressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the me... The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is addressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the mesh. In fact, these ones do not contribute in practice to the corresponding experimental response. The Perfectly Matched Layer (PML) method, allows to suppress the boundary reflections. In this work, we first demonstrate the basis of PML adapted to FEA formalism. Next, the results of such a method are depicted allowing a discussion on the behavior of finite acoustic resonators. 展开更多
关键词 Finite Element Method perfectly Matched Layer Surface Acoustic Wave Piezoelcetric Numerical Modeling
下载PDF
Dynamic soil-structure interaction analysis in time domain based on a modified version of perfectly matched discrete layers
14
作者 Dong Van Nguyen Dookie Kim 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期168-179,共12页
Analysis of soil-structure interaction is commonly conducted by dividing the infinite domain of the soil into two domains:interior and exterior domains.The interior domain is bounded in a small region,while the exteri... Analysis of soil-structure interaction is commonly conducted by dividing the infinite domain of the soil into two domains:interior and exterior domains.The interior domain is bounded in a small region,while the exterior domain is replaced by artificial boundary conditions.The choice of artificial boundary conditions is a critical issue in the analysis of soil-structure interaction problems.Perfectly matched discrete layer(PMDL)has been proved as a good approach for modeling the exterior domain.In this study,a modified version of the PMDLs,i.e.PMDLs with analytical wavelengths(AW-PMDLs),is used in the soil-structure interaction analysis in time domain,which essentially can be regarded as an extension of the analysis in frequency domain,being previously proven to be effective.Numerical verifications are implemented.The results demonstrate that the proposed method performs well in the analysis of soilstructure interaction problems in time domain. 展开更多
关键词 Soil-structure interaction Time DOMAIN Wave PROPAGATION WAVELENGTH INFINITE DOMAIN perfectly matched DISCRETE layer(PMDL)
下载PDF
A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
15
作者 刘亚文 陈亦望 +1 位作者 张品 刘宗信 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期166-176,共11页
A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spheric... A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML. 展开更多
关键词 higher-order finite-difference time-domain spherical coordinates STABILITY numerical dispersion perfectly matched layer
下载PDF
PERFECTLY PLASTIC FIELDS AT A RAPIDLY PROPAGATING PLANE-STRESS CRACK TIP
16
作者 林拜松 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第7期655-662,共8页
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic cons... Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Mises yield condition , steady-state moving equations and elastic perfectly-plastic constitutive equations, we derive the generally analytical expressions of perfectly plastic fields at a rapidly propagating plane-stress crack tip. Applying these generally analytical expressions to the concrete crack, we obtain the analytical expressions of perfectly plastic fields at the rapidly propagating tips of modes I and II plane-stress cracks. 展开更多
关键词 CRACK-TIP perfectly plastic fields plastic region line of stress discontinuity
下载PDF
NEAR-TIP FIELDS FOR A CRACK GROWING ALONG AN ELASTIC PERFECTLY PLASTIC INTERFACE
17
作者 张林 黄克智 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第1期44-53,共10页
The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing c... The stress and deformation fields near the tip of an anti-plane crack growing quasi-statically along an interface of elastic perfectly plastic materials are given in this paper. A family of solutions for the growing crack fields is found covering all admissible crack line shear stress ratios. 展开更多
关键词 near-tip held interfacial crack elastic perfectly plastic material
下载PDF
Finite-difference modeling of Maxwell viscoelastic media developed from perfectly matched layer
18
作者 Ruo-Long Song 《Petroleum Science》 SCIE EI CSCD 2023年第5期2759-2772,共14页
In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.Ho... In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity. 展开更多
关键词 Finite difference Viscoelastic model Nonsplitting perfectly matched layer
下载PDF
AN INVESTIGATION ON ASYMPTOTIC NEAR-TIP FIELDS OF DYNAMIC CRACK IN AN ELASTIC-PERFECTLY PLASTIC COMPRESSIBLE MATERIAL
19
作者 Zhu, XK Hwang, KC Zhang, L 《Acta Mechanica Solida Sinica》 SCIE EI 1997年第3期198-211,共14页
The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of... The stress and deformation fields near the tip of a mode-I dynamic crack steadily propagating in an elastic-perfectly plastic compressible material are considered under plane strain conditions. Within the framework of infinitesimal displacement gradient theory, the material is characterized by the Von Mises yield criterion and the associated J(2) flow theory of plasticity. Through rigorous mathematical analysis, this paper eliminates the possibilities of elastic unloading and continuous asymptotic fields with singular deformation, and then constructs a fully continuous and bounded asymptotic stress and strain field. It is found that in this solution there exists a parameter phi(0) which cannot be determined by asymptotic analysis but may characterize the effect of the far field. Lastly the variations of continuous stresses, velocities and strains around the crack tip are given numerically for different values of phi(0). 展开更多
关键词 plane strain elastic perfectly plastic material compressibility mode-I crack dynamic propagation asymptotic field
下载PDF
A SIMPLIFIED OVER-STRESS ANALYTICAL MODEL OF THEDYNAMIC BUCKLING OF A PERFECTLY PLASTICCOLUMN UNDER AXIAL IMPACT
20
作者 揭敏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第6期607-610,共4页
This paper introduces the strain-rate effects in the analysis of dynamic buckling of a perfectly plastic cohoumn. The corresponding differential equation of dynamics is deduced. The expressions of half-wave length o... This paper introduces the strain-rate effects in the analysis of dynamic buckling of a perfectly plastic cohoumn. The corresponding differential equation of dynamics is deduced. The expressions of half-wave length of buckling mode. critical load and time of buckling are obtained. Discussion on the strain-rate effect on the plastic dynamic buckling of a column is presented. The results of this paper are compared with those of the theory and experiment in[4] 展开更多
关键词 strain rate effect perfectly plastic column dynamic buckling
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部