We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditio...We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.展开更多
In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented ...In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis.展开更多
ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization f...ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization features of.NET Framework,some performance optimization techniques in program design and ASP.NET cache technology to reduce the loading of server,and make the designed system work more efficiently.展开更多
A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is...A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is implemented and the global router is called CEE Gr.The CEE Gr is tested on MCNC benchmarks and the experimental results are promising.展开更多
C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t...C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.展开更多
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu...This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.展开更多
It is well-known that optimizing the wheel system of lunar rovers is essential.However,this is a difficult task due to the complex terrain of the moon and limited resources onboard lunar rovers.In this study,an experi...It is well-known that optimizing the wheel system of lunar rovers is essential.However,this is a difficult task due to the complex terrain of the moon and limited resources onboard lunar rovers.In this study,an experimental prototype was set up to analyze the existing mechanical design of a lunar rover and improve its performance.First,a new vane-telescopic walking wheel was proposed for the lunar rover with a positive and negative quadrangle suspension,considering the complex terrain of the moon.Next,the performance was optimized under the limitations of preserving the slope passage and minimizing power consumption.This was achieved via analysis of the wheel force during movement.Finally,the effectiveness of the proposed method was demonstrated by several simulation experiments.The newly designed wheel can protrude on demand and reduce energy consumption;it can be used as a reference for lunar rover development engineering in China.展开更多
This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic ...This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm.展开更多
We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine ...We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.展开更多
The Global-Regional Integrated forecast System(GRIST)is the next-generation weather and climate integrated model dynamic framework developed by Chinese Academy of Meteorological Sciences.In this paper,we present sever...The Global-Regional Integrated forecast System(GRIST)is the next-generation weather and climate integrated model dynamic framework developed by Chinese Academy of Meteorological Sciences.In this paper,we present several changes made to the global nonhydrostatic dynamical(GND)core,which is part of the ongoing prototype of GRIST.The changes leveraging MPI and PnetCDF techniques were targeted at the parallelization and performance optimization to the original serial GND core.Meanwhile,some sophisticated data structures and interfaces were designed to adjust flexibly the size of boundary and halo domains according to the variable accuracy in parallel context.In addition,the I/O performance of PnetCDF decreases as the number of MPI processes increases in our experimental environment.Especially when the number exceeds 6000,it caused system-wide outages(SWO).Thus,a grouping solution was proposed to overcome that issue.Several experiments were carried out on the supercomputing platform based on Intel x86 CPUs in the National Supercomputing Center in Wuxi.The results demonstrated that the parallel GND core based on grouping solution achieves good strong scalability and improves the performance significantly,as well as avoiding the SWOs.展开更多
With the expansion of the office building area,the energy consumption of office buildings is growing.High⁃performance building design contributes to energy saving and the development of green buildings.However,there i...With the expansion of the office building area,the energy consumption of office buildings is growing.High⁃performance building design contributes to energy saving and the development of green buildings.However,there is a lack of high⁃performance building tools and the workflow is often time⁃consuming.The building performance simulation,multiple objective optimizations,and the decision support model are the new approaches of high⁃performance building design.This paper proposes a newly developed decision support model,a high⁃performance building decision model named HPBuildingDSM,which integrates the building performance simulation,building performance multiple objective optimizations,building performance sampling,and parameter sensitivity analysis to design high⁃performance office buildings.In this research,the HPBuildingDSM was operated to search for the desirable office building design results with low⁃energy and high⁃quality daylighting performances.The simulated results had better daylighting performance and lower energy consumption,whose UDI100-2000 was 37.94%and annual energy consumption performance was 76.28 kWh/(m2·a),indicating a better building performance than the optimized results in the previous case study.展开更多
Multi⁃performance optimization of tread rubber composites is a key issue of great concern in automotive industry.Traditional experimental design approach via“trial and error”or intuition is ineffective due to mutual...Multi⁃performance optimization of tread rubber composites is a key issue of great concern in automotive industry.Traditional experimental design approach via“trial and error”or intuition is ineffective due to mutual inhibition among multiple properties.A“Uniform design⁃Machine learning”strategy for performance prediction and multi⁃performance optimization of tread rubber composites was proposed.The wear resistance,rolling resistance,tensile strength and wet skid resistance were simultaneously optimized.A series of feasible optimization designs were screened via statistical analysis and machine learning analysis,and were experimentally prepared.The verification experiments demonstrate that the optimization design via machine learning analysis meets the optimization requirements of all target performance,especially for Akron abrasion and 60℃tanδ(about 21%and 9%lower than the design targets,respectively)due to the inhibition of mechanical degradation and good dispersion of fillers.展开更多
Due to the shortage of lithium resource reserves and the pressure of rising prices,sodium-ion batteries have regained the attention of the public,and shown great potential for application in the fields of grid energy ...Due to the shortage of lithium resource reserves and the pressure of rising prices,sodium-ion batteries have regained the attention of the public,and shown great potential for application in the fields of grid energy storage and low-speed vehicles to achieve the purpose of complementing lithium-ion batteries,so it is imperative to promote the commercial application of sodiumion batteries.For sodium-ion battery anode materials,hard carbon is the material most likely to be used commercially.However,there is still much work to be done before its commercialization.This review provides a comprehensive overview of the current research status from the following three aspects.First,the microstructure and sodium storage active sites of hard carbon are described.Then,the mechanism of sodium storage in hard carbon is investigated,which can be broadly categorized into four model,“insertion–filling”,“adsorption–insertion”,“adsorption–filling”,and“multistage”.Finally,from the perspective of improving the electrochemical performance of hard carbon,the performance improvement strategies proposed in recent years are summarized.Combined with the performance of hard carbon commercial products of some enterprises,the future development goal of hard carbon is prospected,hoping that all sectors of society can work hard for this common goal.展开更多
Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power ge...Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.展开更多
We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate t...We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum c criterion will degenerate toη-=η_(C)/(2-η_(C))andε-=(√9+8ε_(C)-3)/2 when symmetric squeezing is satisfied,respectively.We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum X criterion.These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum X criterion can be improved,reduced or even inhibited in asymmetric squeezing.Furthermore,we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system.However,the coefficient of performance of the corresponding refrigerator is higher.展开更多
With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the func...With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the function and beauty of the building while ignoring its impact on the environment.In addition,the lack of effective design and construction management methods also led to high resource and energy consumption.To overcome this challenge,the concept of green building came into being.Green buildings emphasize reducing the negative impact of buildings on the environment and improving resource utilization efficiency throughout the entire life cycle.BIM technology provides strong support for achieving this goal.Based on this,starting from the role of BIM technology in green building performance optimization,this article analyzes the optimization of green building performance solutions based on BIM technology in detail to promote the sustainable development of buildings.展开更多
A detailed model of thermally-driven combined thermoelectric(TE) heating device is established. The device consists of twostage TE heat pump(TTEH) and two-stage TE generator(TTEG) with four external heat exchangers(HE...A detailed model of thermally-driven combined thermoelectric(TE) heating device is established. The device consists of twostage TE heat pump(TTEH) and two-stage TE generator(TTEG) with four external heat exchangers(HEXs). Both internal losses and external heat transfer irreversibilities are considered in the model. The heating capacity and the coefficient of performance(COP) of the device are improved through numerical optimization,which is of great significance to the application of the device. The distribution of the total TE element number among four TE devices and the distribution of the total external heat conductance among the four external HEXs are optimized. The results show that both the reservoir temperatures of TTEG and TTEH have significant influences on the performance and the corresponding optimum parameters of the device. The COP can reach 0.14 after optimization when the temperature difference of heat source is 150 K and the temperature difference of heating is 10 K.展开更多
In this paper, an irreversible thermionic refrigerator model based on van der Waals heterostructure with various irreversibilities is established by utilizing combination of non-equilibrium thermodynamics and finite t...In this paper, an irreversible thermionic refrigerator model based on van der Waals heterostructure with various irreversibilities is established by utilizing combination of non-equilibrium thermodynamics and finite time thermodynamics. The basic performance characteristics of the refrigerator are obtained. The effects of key factors, such as bias voltages, Schottky barrier heights and heat leakages, on the performance are studied. Results show that cooling rates and coefficients of performances(COPs) can attain the double maximum with proper modulation of barrier heights and bias voltages. Increasing cross-plane thermal resistance as well as decreasing electrode-reservoir thermal resistance and reservoir-reservoir thermal resistance can enhance the performance of the device. The optimal performance region is the interval between the maximum cooling rate point and the maximum COP point. By modulating the bias voltage, the working state of the device can fall into the optimal performance region. The optimal performance of the refrigerator when using single layer graphene and a few layers graphene as electrode material is also compared.展开更多
Classification is an important machine learning problem, and decision tree construction algorithms are an important class of solutions to this problem. RainForest is a scalable way to implement decision tree construct...Classification is an important machine learning problem, and decision tree construction algorithms are an important class of solutions to this problem. RainForest is a scalable way to implement decision tree construction algorithms. It consists of several algorithms, of which the best one is a hybrid between a traditional recursive implementation and an iterative implementation which uses more memory but involves less write operations. We propose an optimized algorithm inspired by RainForest. By using a more sophisticated switching criterion between the two algorithms, we are able to get a performance gain even when all statistical information fits in memory. Evaluations show that our method can achieve a performance boost of 2.8 times in average than the traditional recursive implementation.展开更多
A large number of cases show that the multi-objective optimization method can significantly improve building performance.The method for multi-objective building performance optimization(BPO)design has achieved rapid d...A large number of cases show that the multi-objective optimization method can significantly improve building performance.The method for multi-objective building performance optimization(BPO)design has achieved rapid development in recent years.However,the BPO method still needs to be improved.Specifically,weak interaction between the optimization process and the decision-making process results in low optimization efficiency,which limits the widespread application of the optimization method in early design stage.In this paper,a new interactive BPO mode is explored to strengthen the interaction between the optimization process and decisionmaking process,and a preference-based multi-objective BPO method is proposed to account for designers'decision preferences during the optimization process,making the objective more controllable,improving the optimization efficiency and ensuring the diversity of solutions.Firstly,this paper illustrates the proposed method in detail,defines the concept of performance preference,expounds the flow of the preference-based multi-objective optimization algorithm,and proposes three indicators to evaluate the algorithm,which includes convergence speed,preference satisfaction rate,and diversity measurement.Secondly,through testing and comparison,it is found that the proposed preference-based algorithm has advantages over the non-preference optimization algorithm(represented by the NSGA-II algorithm).The proposed method leads to faster convergence and higher preference satisfaction,so it is more suitable for the BPO process in the early design stage.Specially,the proposed method can achieve 100%preference satisfaction rate with only 2400 simulations,while the non-preference method can only achieve 20%preference satisfaction rate after 5800 simulations.In this paper,a preference-based multi-objective BPO method is proposed to make the optimization process closely interact with the decision-making process and make the design preferences be accounted during the BPO process,thereby improving the optimization efficiency.In addition,this study first proposes two indicators to measure the quality of optimization results:preference satisfaction rate and diversity measurement.This study aims to guide the development of BPO methods towards providing high satisfaction rate and high quality optimization results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62303029)the China Postdoctoral Science Foundation (Grant No. 2022M720364)the Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0300500 and 2021ZD0300503)。
文摘We explore the impact of pumping beams with different transverse intensity profiles on the performance of the spinexchange relaxation-free(SERF) atomic magnetometers(AMs). We conduct experiments comparing the traditional Gaussian optically-pumped AM with that utilizing the flat-top optically-pumped(FTOP) method. Our findings reveal that the FTOP-based approach outperforms the conventional method, exhibiting a larger response, a narrower magnetic resonance linewidth, and a superior low-frequency noise performance. Specifically, the use of FTOP method leads to a 16% enhancement in average sensitivity within 1 Hz–30 Hz frequency range. Our research emphasizes the significance of achieving transverse polarization uniformity in AMs, providing insights for future optimization efforts and sensitivity improvements in miniaturized magnetometers.
文摘In the practice of control the industrial processes, proportional-integral-derivative controller remains pivotal due to its simple structure and system performance-oriented tuning process. In this paper are presented two approaches for synthesis the proportional-integral-derivative controller to the models of objects with inertia, that offer the procedure of system performance optimization based on maximum stability degree criterion. The proposed algorithms of system performance optimization were elaborated for model of objects with inertia second and third order and offer simple analytical expressions for tuning the PID controller. Validation and verification are conducted through computer simulations using MATLAB, demonstrating successful performance optimization and showcasing the effectiveness PID controllers’ tuning. The proposed approaches contribute insights to the field of control, offering a pathway for optimizing the performance of second and third-order inertial systems through robust controller synthesis.
基金Supported by National High Technology Research and Development Program of China(2006AA10A310)Key Task Project in Scientific and Technological Research in Heilongjing Province(GB06B601)Innovation Fund in Daqing Hi-tech Zone(DQGX07YF012)~~
文摘ASP.NET-based agricultural machinery monitoring WEBGIS is flexible and dynamic,but this flexibility and dynamic characteristics reduce the performance of WEBGIS.Therefore,it is necessary to use built-in optimization features of.NET Framework,some performance optimization techniques in program design and ASP.NET cache technology to reduce the loading of server,and make the designed system work more efficiently.
文摘A global routing algorithm with performance optimization under multi constraints is proposed,which studies RLC coupling noise,timing performance,and routability simultaneously at global routing level.The algorithm is implemented and the global router is called CEE Gr.The CEE Gr is tested on MCNC benchmarks and the experimental results are promising.
文摘C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.
基金supported by the Funds for Creative Research Groups of China(No.60821063)the State Key Program of National Natural Science of China(No.60534010)+3 种基金the National 973 Program of China(No.2009CB320604)the Funds of National Science of China(No.60674021,60804024)the 111 Project(No.B08015)the Funds of PhD program of MOE,China(No.20060145019)
文摘This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.
文摘It is well-known that optimizing the wheel system of lunar rovers is essential.However,this is a difficult task due to the complex terrain of the moon and limited resources onboard lunar rovers.In this study,an experimental prototype was set up to analyze the existing mechanical design of a lunar rover and improve its performance.First,a new vane-telescopic walking wheel was proposed for the lunar rover with a positive and negative quadrangle suspension,considering the complex terrain of the moon.Next,the performance was optimized under the limitations of preserving the slope passage and minimizing power consumption.This was achieved via analysis of the wheel force during movement.Finally,the effectiveness of the proposed method was demonstrated by several simulation experiments.The newly designed wheel can protrude on demand and reduce energy consumption;it can be used as a reference for lunar rover development engineering in China.
文摘This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm.
基金the National Natural Science Foundation of China(Grant No.11875034)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘We investigate the finite-time performance of a quantum endoreversible Carnot engine cycle and its inverse operation-Carnot refrigeration cycle,employing a spin-1/2 system as the working substance.The thermal machine is alternatively driven by a hot boson bath of inverse temperatureβ_(h)and a cold boson bath at inverse temperatureβ_(c)(>βh).While for the engine model the hot bath is constructed to be squeezed,in the refrigeration cycle the cold bath is established to be squeezed,with squeezing parameter r.We obtain the analytical expressions for both efficiency and power in heat engines and for coefficient of performance and cooling rate in refrigerators.We find that,in the high-temperature limit,the efficiency at maximum power is bounded by the analytical valueη_(+)=√sech(2r)(1-η_(C)),and the coefficient of performance at the maximum figure of merit is limited byε_(+)=√sech(2r)(1+ε_(C))/sech(2r)(1+ε_(C))-εC)-1,whereη_(C)=1-β_(h)/β_(c)andε_(C)=β_(h)/(β_(c)-β_(h))are the respective Carnot values of the engines and refrigerators.These analytical results are identical to those obtained from the Carnot engines based on harmonic systems,indicating that the efficiency at maximum power and coefficient at maximum figure of merit are independent of the working substance.
基金This work was supported by the National Key Research and Development Program of China under Grant No.2017YFC1502203.
文摘The Global-Regional Integrated forecast System(GRIST)is the next-generation weather and climate integrated model dynamic framework developed by Chinese Academy of Meteorological Sciences.In this paper,we present several changes made to the global nonhydrostatic dynamical(GND)core,which is part of the ongoing prototype of GRIST.The changes leveraging MPI and PnetCDF techniques were targeted at the parallelization and performance optimization to the original serial GND core.Meanwhile,some sophisticated data structures and interfaces were designed to adjust flexibly the size of boundary and halo domains according to the variable accuracy in parallel context.In addition,the I/O performance of PnetCDF decreases as the number of MPI processes increases in our experimental environment.Especially when the number exceeds 6000,it caused system-wide outages(SWO).Thus,a grouping solution was proposed to overcome that issue.Several experiments were carried out on the supercomputing platform based on Intel x86 CPUs in the National Supercomputing Center in Wuxi.The results demonstrated that the parallel GND core based on grouping solution achieves good strong scalability and improves the performance significantly,as well as avoiding the SWOs.
文摘With the expansion of the office building area,the energy consumption of office buildings is growing.High⁃performance building design contributes to energy saving and the development of green buildings.However,there is a lack of high⁃performance building tools and the workflow is often time⁃consuming.The building performance simulation,multiple objective optimizations,and the decision support model are the new approaches of high⁃performance building design.This paper proposes a newly developed decision support model,a high⁃performance building decision model named HPBuildingDSM,which integrates the building performance simulation,building performance multiple objective optimizations,building performance sampling,and parameter sensitivity analysis to design high⁃performance office buildings.In this research,the HPBuildingDSM was operated to search for the desirable office building design results with low⁃energy and high⁃quality daylighting performances.The simulated results had better daylighting performance and lower energy consumption,whose UDI100-2000 was 37.94%and annual energy consumption performance was 76.28 kWh/(m2·a),indicating a better building performance than the optimized results in the previous case study.
基金the State Key Program of National Natural Science of China(Grant No.51333004).
文摘Multi⁃performance optimization of tread rubber composites is a key issue of great concern in automotive industry.Traditional experimental design approach via“trial and error”or intuition is ineffective due to mutual inhibition among multiple properties.A“Uniform design⁃Machine learning”strategy for performance prediction and multi⁃performance optimization of tread rubber composites was proposed.The wear resistance,rolling resistance,tensile strength and wet skid resistance were simultaneously optimized.A series of feasible optimization designs were screened via statistical analysis and machine learning analysis,and were experimentally prepared.The verification experiments demonstrate that the optimization design via machine learning analysis meets the optimization requirements of all target performance,especially for Akron abrasion and 60℃tanδ(about 21%and 9%lower than the design targets,respectively)due to the inhibition of mechanical degradation and good dispersion of fillers.
基金the National Natural Science Foundation of China(Nos.22078078 and 22379036)the Natural Science Foundation of Heilongjiang Province(No.JQ2021B001)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS20).
文摘Due to the shortage of lithium resource reserves and the pressure of rising prices,sodium-ion batteries have regained the attention of the public,and shown great potential for application in the fields of grid energy storage and low-speed vehicles to achieve the purpose of complementing lithium-ion batteries,so it is imperative to promote the commercial application of sodiumion batteries.For sodium-ion battery anode materials,hard carbon is the material most likely to be used commercially.However,there is still much work to be done before its commercialization.This review provides a comprehensive overview of the current research status from the following three aspects.First,the microstructure and sodium storage active sites of hard carbon are described.Then,the mechanism of sodium storage in hard carbon is investigated,which can be broadly categorized into four model,“insertion–filling”,“adsorption–insertion”,“adsorption–filling”,and“multistage”.Finally,from the perspective of improving the electrochemical performance of hard carbon,the performance improvement strategies proposed in recent years are summarized.Combined with the performance of hard carbon commercial products of some enterprises,the future development goal of hard carbon is prospected,hoping that all sectors of society can work hard for this common goal.
基金supported by the National Natural Science Foundations of China under Grant Nos.52206123,52075506,52205543,52322510,52275470 and 52105129Science and Technology Planning Project of Sichuan Province under Grant No.2021YJ0557+2 种基金Natural Science Foundation of Sichuan Province under Grant No.2023NSFSC1947Presidential Foundation of China Academy of Engineering PhysicsGrant No.YZJJZQ2022009。
文摘Fluid lubricated bearings have been widely adopted as support components for high-end equipment in metrology,semiconductor devices,aviation,strategic defense,ultraprecision manufacturing,medical treatment,and power generation.In all these applications,the equipment must deliver extreme working performances such as ultraprecise movement,ultrahigh rotation speed,ultraheavy bearing loads,ultrahigh environmental temperatures,strong radiation resistance,and high vacuum operation,which have challenged the design and optimization of reliable fluid lubricated bearings.Breakthrough of any related bottlenecks will promote the development course of high-end equipment.To promote the advancement of high-end equipment,this paper reviews the design and optimization of fluid lubricated bearings operated at typical extreme working performances,targeting the realization of extreme working performances,current challenges and solutions,underlying deficiencies,and promising developmental directions.This paper can guide the selection of suitable fluid lubricated bearings and optimize their structures to meet their required working performances.
文摘We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum c criterion will degenerate toη-=η_(C)/(2-η_(C))andε-=(√9+8ε_(C)-3)/2 when symmetric squeezing is satisfied,respectively.We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum X criterion.These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum X criterion can be improved,reduced or even inhibited in asymmetric squeezing.Furthermore,we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system.However,the coefficient of performance of the corresponding refrigerator is higher.
文摘With the acceleration of urbanization,the construction industry has developed rapidly worldwide but has also brought serious environmental problems.Traditional architectural design methods often only focus on the function and beauty of the building while ignoring its impact on the environment.In addition,the lack of effective design and construction management methods also led to high resource and energy consumption.To overcome this challenge,the concept of green building came into being.Green buildings emphasize reducing the negative impact of buildings on the environment and improving resource utilization efficiency throughout the entire life cycle.BIM technology provides strong support for achieving this goal.Based on this,starting from the role of BIM technology in green building performance optimization,this article analyzes the optimization of green building performance solutions based on BIM technology in detail to promote the sustainable development of buildings.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11974429 and 51576207)the Natural Science Foundation of Naval University of Engineering(Grant No.20161505)。
文摘A detailed model of thermally-driven combined thermoelectric(TE) heating device is established. The device consists of twostage TE heat pump(TTEH) and two-stage TE generator(TTEG) with four external heat exchangers(HEXs). Both internal losses and external heat transfer irreversibilities are considered in the model. The heating capacity and the coefficient of performance(COP) of the device are improved through numerical optimization,which is of great significance to the application of the device. The distribution of the total TE element number among four TE devices and the distribution of the total external heat conductance among the four external HEXs are optimized. The results show that both the reservoir temperatures of TTEG and TTEH have significant influences on the performance and the corresponding optimum parameters of the device. The COP can reach 0.14 after optimization when the temperature difference of heat source is 150 K and the temperature difference of heating is 10 K.
基金supported by the National Natural Science Foundation of China (Grant Nos.51779262, 51576207, 51306206)the Hubei Province Natural Science Foundation of China (Grant No.2017CFB498)。
文摘In this paper, an irreversible thermionic refrigerator model based on van der Waals heterostructure with various irreversibilities is established by utilizing combination of non-equilibrium thermodynamics and finite time thermodynamics. The basic performance characteristics of the refrigerator are obtained. The effects of key factors, such as bias voltages, Schottky barrier heights and heat leakages, on the performance are studied. Results show that cooling rates and coefficients of performances(COPs) can attain the double maximum with proper modulation of barrier heights and bias voltages. Increasing cross-plane thermal resistance as well as decreasing electrode-reservoir thermal resistance and reservoir-reservoir thermal resistance can enhance the performance of the device. The optimal performance region is the interval between the maximum cooling rate point and the maximum COP point. By modulating the bias voltage, the working state of the device can fall into the optimal performance region. The optimal performance of the refrigerator when using single layer graphene and a few layers graphene as electrode material is also compared.
文摘Classification is an important machine learning problem, and decision tree construction algorithms are an important class of solutions to this problem. RainForest is a scalable way to implement decision tree construction algorithms. It consists of several algorithms, of which the best one is a hybrid between a traditional recursive implementation and an iterative implementation which uses more memory but involves less write operations. We propose an optimized algorithm inspired by RainForest. By using a more sophisticated switching criterion between the two algorithms, we are able to get a performance gain even when all statistical information fits in memory. Evaluations show that our method can achieve a performance boost of 2.8 times in average than the traditional recursive implementation.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(No.51825802)the China Postdoctoral Science Foundation Grant(No.2019M650408).
文摘A large number of cases show that the multi-objective optimization method can significantly improve building performance.The method for multi-objective building performance optimization(BPO)design has achieved rapid development in recent years.However,the BPO method still needs to be improved.Specifically,weak interaction between the optimization process and the decision-making process results in low optimization efficiency,which limits the widespread application of the optimization method in early design stage.In this paper,a new interactive BPO mode is explored to strengthen the interaction between the optimization process and decisionmaking process,and a preference-based multi-objective BPO method is proposed to account for designers'decision preferences during the optimization process,making the objective more controllable,improving the optimization efficiency and ensuring the diversity of solutions.Firstly,this paper illustrates the proposed method in detail,defines the concept of performance preference,expounds the flow of the preference-based multi-objective optimization algorithm,and proposes three indicators to evaluate the algorithm,which includes convergence speed,preference satisfaction rate,and diversity measurement.Secondly,through testing and comparison,it is found that the proposed preference-based algorithm has advantages over the non-preference optimization algorithm(represented by the NSGA-II algorithm).The proposed method leads to faster convergence and higher preference satisfaction,so it is more suitable for the BPO process in the early design stage.Specially,the proposed method can achieve 100%preference satisfaction rate with only 2400 simulations,while the non-preference method can only achieve 20%preference satisfaction rate after 5800 simulations.In this paper,a preference-based multi-objective BPO method is proposed to make the optimization process closely interact with the decision-making process and make the design preferences be accounted during the BPO process,thereby improving the optimization efficiency.In addition,this study first proposes two indicators to measure the quality of optimization results:preference satisfaction rate and diversity measurement.This study aims to guide the development of BPO methods towards providing high satisfaction rate and high quality optimization results.