期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于中国强震动数据的PhaseNet网络捡拾P波到时研究
1
作者 侯宝瑞 代昊祯 +1 位作者 宋晋东 李山有 《世界地震工程》 北大核心 2024年第4期131-141,共11页
快速和准确捡拾地震P波到时是地震预警技术的基础工作之一。PhaseNet等U形网络已在“谛听”测震数据集上取得良好的震相捡拾结果,旨在提升处理M L3.0以下的地震的能力。目前针对有限中国强震动数据的震相捡拾研究较少,地震预警主要是针... 快速和准确捡拾地震P波到时是地震预警技术的基础工作之一。PhaseNet等U形网络已在“谛听”测震数据集上取得良好的震相捡拾结果,旨在提升处理M L3.0以下的地震的能力。目前针对有限中国强震动数据的震相捡拾研究较少,地震预警主要是针对处理M L3.0以上的地震。该研究以在地震预警中快速和准确捡拾地震P波到时为目的,直接迁移和构建PhaseNet的衍生网络,探究利用有限中国强震动数据重训的网络模型是否具有良好的捡拾P波表现。研究结果表明:PhaseNet及其衍生网络模型的精确度、召回率、F 1分数、捡拾误差均值(μ)和标准差(δ)约为0.942、0.930、0.937、-20 ms和200 ms左右,具有良好的捡拾P波到时精度和泛化性能;此外,PhaseNet及其衍生网络在高信噪比条件下捡拾效果良好,但对于低信噪比数据的捡拾效果仍有待提升。 展开更多
关键词 深度学习 中国强震动数据 P波到时捡拾 phasenet网络 地震预警
下载PDF
PhaseNet与EQTransformer的震相拾取对比研究
2
作者 周本伟 张丽芬 +3 位作者 戴苗 赵凌云 魏贵春 周舟 《大地测量与地球动力学》 CSCD 北大核心 2023年第6期656-660,共5页
将湖北测震台网的地震波形作为数据集,采用PhaseNet和EQTransformer模型进行震相拾取,并对其表现及泛化能力进行测试评估。结果表明,对于P波而言,当震相概率阈值为0.1或0.3时,PhaseNet有较高的召回率,可检测到更多微震事件;EQTransforme... 将湖北测震台网的地震波形作为数据集,采用PhaseNet和EQTransformer模型进行震相拾取,并对其表现及泛化能力进行测试评估。结果表明,对于P波而言,当震相概率阈值为0.1或0.3时,PhaseNet有较高的召回率,可检测到更多微震事件;EQTransformer的召回率略低,但精确率较高。S波的拾取效果差于P波,PhaseNet的精确率低于EQTransformer,但其召回率较高,F_(1)值也能保持在0.8左右,拾取表现较为稳定。进一步分析2种模型的拾取结果与事件震中距、信噪比及震级之间的关系发现,PhaseNet的震相拾取效果与震中距、信噪比的关联较强,与震级关系不大,信噪比越高的数据拾取效果越好;EQTransformer与信噪比的关联较强,信噪比越高拾取效果越好,与震中距和震级关系不大。 展开更多
关键词 phasenet EQTransformer 深度学习 震相拾取 泛化性
下载PDF
Generalization of PhaseNet in Shandong and its application to the Changqing M4.1 earthquake sequence
3
作者 Zonghui Dai Lianqing Zhou +2 位作者 Xuhui Hu Junhao Qu Xia Li 《Earthquake Science》 2023年第3期212-227,共16页
Waveforms of seismic events,extracted from January 2019 to December 2021 were used to construct a test dataset to investigate the generalizability of PhaseNet in the Shandong region.The results show that errors in the... Waveforms of seismic events,extracted from January 2019 to December 2021 were used to construct a test dataset to investigate the generalizability of PhaseNet in the Shandong region.The results show that errors in the picking of seismic phases(P-and Swaves)had a broadly normal distribution,mainly concentrated in the ranges of−0.4–0.3 s and−0.4–0.8 s,respectively.These results were compared with those published in the original PhaseNet article and were found to be approximately 0.2–0.4 s larger.PhaseNet had a strong generalizability for P-and S-wave picking for epicentral distances of less than 120 km and 110 km,respectively.However,the phase recall rate decreased rapidly when these distances were exceeded.Furthermore,the generalizability of PhaseNet was essentially unaffected by magnitude.The M4.1 earthquake sequence in Changqing,Shandong province,China,that occurred on February 18,2020,was adopted as a case study.PhaseNet detected more than twice the number of earthquakes in the manually obtained catalog.This further verified that PhaseNet has strong generalizability in the Shandong region,and a high-precision earthquake catalog was constructed.According to these precise positioning results,two earthquake sequences occurred in the study area,and the southern cluster may have been triggered by the northern cluster.The focal mechanism solution,regional stress field,and the location results of the northern earthquake sequence indicated that the seismic force of the earthquake was consistent with the regional stress field. 展开更多
关键词 phasenet deep learning GENERALIZATION Changqing earthquake earthquake catalog
下载PDF
Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes 被引量:10
4
作者 Ce Jiang Lihua Fang +1 位作者 Liping Fan Boren Li 《Earthquake Science》 2021年第5期425-435,共11页
PhaseNet and EQTransformer are two state-of-the-art earthquake detection methods that have been increasingly applied worldwide.To evaluate the generaliz-ation ability of the two models and provide insights for the dev... PhaseNet and EQTransformer are two state-of-the-art earthquake detection methods that have been increasingly applied worldwide.To evaluate the generaliz-ation ability of the two models and provide insights for the development of new models,this study took the sequences of the Yunnan Yangbi M6.4 earthquake and Qinghai Maduo M7.4 earthquake as examples to compare the earthquake detection effects of the two abovementioned models as well as their abilities to process dense seismic sequences.It has been demonstrated from the corresponding research that due to the differences in seismic waveforms found in different geographical regions,the picking performance is reduced when the two models are applied directly to the detection of the Yangbi and Maduo earthquakes.PhaseNet has a higher recall than EQTransformer,but the recall of both models is reduced by 13%-56%when compared with the results rep-orted in the original papers.The analysis results indicate that neural networks with deeper layers and complex structures may not necessarily enhance earthquake detection perfor-mance.In designing earthquake detection models,attention should be paid to not only the balance of depth,width,and architecture but also to the quality and quantity of the training datasets.In addition,noise datasets should be incorporated during training.According to the continuous waveforms detected 21 days before the Yangbi and Maduo earthquakes,the Yangbi earthquake exhibited foreshock,while the Maduo earthquake showed no foreshock activity,indicating that the two earthquakes’nucleation processes were different. 展开更多
关键词 earthquake detection deep learning phasenet EQTransformer Yangbi earthquake Maduo earth-quake
下载PDF
长阳页岩气试验井压裂微震检测及特征
5
作者 周鲁 董建辉 +3 位作者 朱建 宋伟 徐玉聪 朱祥峰 《华北地震科学》 2024年第2期73-79,108,共8页
基于三峡地震台网2017年7—8月记录到的长阳地区发生的震群资料,通过PhaseNet进行震相识别、REAL震相关联、HypoInverse绝对定位、HypoDD相对定位等定位流程,构建了长阳页岩气试验井压裂震群的高分辨率地震目录。震群重定位结果表明:地... 基于三峡地震台网2017年7—8月记录到的长阳地区发生的震群资料,通过PhaseNet进行震相识别、REAL震相关联、HypoInverse绝对定位、HypoDD相对定位等定位流程,构建了长阳页岩气试验井压裂震群的高分辨率地震目录。震群重定位结果表明:地震序列整体上沿着地表由南向北呈带状展布;在长阳页岩气试验井水力压裂前后,长阳地区的地震活动性非常低,但在试验井开始压裂期间,整体地震活动性猛增,最大震级可达ML3.4,但震群活动对周边区域地震活动性的影响较小;该震群成因可能为页岩气开采试验井水力压裂导致天阳坪断裂活化产生的。 展开更多
关键词 phasenet 深度神经网络 三峡水库 水力压裂 诱发地震 双差定位
下载PDF
基于深度学习的地震检测模型在区域台网的泛化性研究 被引量:3
6
作者 赵明 陈石 《地震》 CSCD 北大核心 2021年第1期166-179,共14页
将识别地震的深度学习算法PhaseNet应用于四川台网和首都圈台网,对该模型的泛化能力进行了测试和评估。首先利用2010年1月至2018年10月首都圈台网199个地震台站记录的29328个事件(ML0~ML4)所对应的126761段事件波形,以及2019年4—9月四... 将识别地震的深度学习算法PhaseNet应用于四川台网和首都圈台网,对该模型的泛化能力进行了测试和评估。首先利用2010年1月至2018年10月首都圈台网199个地震台站记录的29328个事件(ML0~ML4)所对应的126761段事件波形,以及2019年4—9月四川及邻省部分台网227个地震台站记录的16595个事件(ML0~ML6.0)所对应的120233段事件波形分别建立了SC和CA测试数据集,并用预训练好的PhaseNet模型进行P、S震相自动识别和到时拾取,并将拾取结果与人工拾取结果在不同误差阈值下进行对比。测试结果表明,PhaseNet在两个数据集上具有良好的震相检测能力(误差阈值为0.5 s),其P、S震相检测的F1值都超过0.75,具有比较稳定的准确拾取P波到时能力(误差阈值0.1 s),其检测F1值均超过0.6,而S波到时拾取的F1值分别为0.33(SC)和0.53(CA)。进一步分析了测试结果与震中距、震级、信噪比、台站所处地域之间的关系,为下一步继续训练更优化的模型指明了方向。研究结果表明,PhaseNet算法在区域台网地震自动检测和到时拾取方面有很大的应用潜力和提升空间,可以为区域台网的自动编目工作提供辅助。 展开更多
关键词 phasenet 泛化性 到时拾取 震相检测
下载PDF
融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用
7
作者 蒋策 吕作勇 房立华 《地球科学》 EI CAS CSCD 北大核心 2024年第2期469-479,共11页
随着国家地震烈度速报与预警工程的建设,加速度记录在地震科学中将得到越来越多的应用.但目前的地震检测模型多使用速度记录训练,对加速度记录的检测效果较差.利用广东地震台网数据,训练得到了可检测速度记录的PhaseNet_GD模型和检测加... 随着国家地震烈度速报与预警工程的建设,加速度记录在地震科学中将得到越来越多的应用.但目前的地震检测模型多使用速度记录训练,对加速度记录的检测效果较差.利用广东地震台网数据,训练得到了可检测速度记录的PhaseNet_GD模型和检测加速度记录的PhaseNet_ITS模型.在此基础上,结合GaMMA震相关联和HYPOSAT地震定位方法,发展了一套新的地震数据智能处理流程,并处理了2023年新丰江水库M_(L)4.8地震序列,检测出的事件数量是人工目录的3.8倍,匹配率为93.2%,误检测率为0.38%.这一系统可快速产出完备性高、高精度的地震目录,为水库地震监测和区域地震台网的数据实时处理提供技术支撑. 展开更多
关键词 区域台网 深度学习 地震检测 phasenet 新丰江水库 水库地震
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部