Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the pho...Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.展开更多
PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can l...PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.展开更多
Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell ac...Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.展开更多
Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis ...Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.展开更多
The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)inductio...The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.展开更多
Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and...Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.展开更多
Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 g...Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.展开更多
Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive t...Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.展开更多
Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor ...Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.展开更多
Nowadays,the cumulative intake of glucocorticoids has become the most common pathogenic factor for non-traumatic osteonecrosis of the femoral head(ONFH).Apoptosis of osteoblasts is considered as the main reason of ONF...Nowadays,the cumulative intake of glucocorticoids has become the most common pathogenic factor for non-traumatic osteonecrosis of the femoral head(ONFH).Apoptosis of osteoblasts is considered as the main reason of ONFH at the molecular level.Glycogen synthase kinase 3β(GSK3β)is an important regulator of cellular differentiation and apoptosis pathway,which can modulate the balance between osteoblasts and osteoclasts.Several studies have reported about its function in osteoporosis,but little is known about it in osteonecrosis.In our study,lipopolysaccharide and methylprednisolone were utilized to establish a rat ONFH model.The phosphorylation of GSK3βSer-9 was decreased in the model.Western blotting examination ofβ-catenin,Bcl-2,Bax and caspase-3 revealed that the osteoblasts were apoptotic.In dexamethasone(Dex)-incubated primary osteoblasts,the expression profile of GSK3βphosphorylation and apoptotic factors were consistent with those in the rat ONFH model.To further investigate the regulation of osteonecrosis caused by GSK3β,the expression and function of GSK3βwere inhibited in Dex-incubated primary osteoblasts.The knockdown of GSK3βby siRNA decreased the expression of Bax and cleaved caspase-3,but increased Bcl-2 andβ-catenin.On the other hand,selective inhibition of GSK3βfunction by LiCl counteracted the activation of caspase-3 induced by Dex.Our work is the first study about the GSK3P phosphorylation in ONFH,and provides evidence for further therapeutic methods.展开更多
Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein...Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein,microglia were pharmacologically depleted and the effects on the astrocytic response were examined.We further explored the potential mechanisms involving the signal transducers and activators of transcription 3(STAT3)pathway.For in vivo experiments,we constructed a contusion spinal cord injury model in C57BL/6 mice.To deplete microglia,all mice were treated with colony-stimulating factor 1 receptor inhibitor PLX3397,starting 2 weeks prior to surgery until they were sacrificed.Cell proliferation was examined by 5-ethynyl-2-deoxyuridine(EdU)and three pivotal inflammatory cytokines were detected by a specific Bio-Plex Pro^(TM) Reagent Kit.Locomotor function,neuroinflammation,astrocyte activation and phosphorylated STAT3(pSTAT3,a maker of activation of STAT3 signaling)levels were determined.For in vitro experiments,a microglia and astrocyte coculture system was established,and the small molecule STA21,which blocks STAT3 activation,was applied to investigate whether STAT3 signaling is involved in mediating astrocyte proliferation induced by microglia.PLX3397 administration disrupted glial scar formation,increased inflammatory spillover,induced diffuse tissue damage and impaired functional recovery after spinal cord injury.Microglial depletion markedly reduced EdU+proliferating cells,especially proliferating astrocytes at 7 days after spinal cord injury.RNA sequencing analysis showed that the JAK/STAT3 pathway was downregulated in mice treated with PLX3397.Double immunofluorescence staining confirmed that PLX3397 significantly decreased STAT3 expression in astrocytes.Importantly,in vitro coculture of astrocytes and microglia showed that microglia-induced astrocyte proliferation was abolished by STA21 administration.These findings suggest that microglial depletion impaired astrocyte proliferation and astrocytic scar formation,and induced inflammatory diffusion partly by inhibiting STAT3 phosphorylation in astrocytes following spinal cord injury.展开更多
AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK)...AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a significant statistical significance (P〈 0.01). CONCLUSION: IL-1β has a direct action on hepatic fibrosis by up-regulating TIMMP-1 mRNA expression in ratessionin in rate HSC.JNK and p38 mitogen-activated protein kinases (MAPKs) are involved in IL-1β-induced TIMMP-1 gene expression, and play a distinct role in this process, indicating that p38 and .INK pathways cooperatively mediate TIMP-1 mRNA expression in rat HSC.展开更多
BACKGROUND The phosphorylation status ofβ-arrestin1 influences its function as a signal strongly related to sorafenib resistance.This retrospective study aimed to develop and validate radiomics-based models for predi...BACKGROUND The phosphorylation status ofβ-arrestin1 influences its function as a signal strongly related to sorafenib resistance.This retrospective study aimed to develop and validate radiomics-based models for predictingβ-arrestin1 phosphorylation in hepatocellular carcinoma(HCC)using whole-lesion radiomics and visual imaging features on preoperative contrast-enhanced computed tomography(CT)images.AIM To develop and validate radiomics-based models for predictingβ-arrestin1 phosphorylation in HCC using radiomics with contrast-enhanced CT.METHODS Ninety-nine HCC patients(training cohort:n=69;validation cohort:n=30)receiving systemic sorafenib treatment after surgery were enrolled in this retrospective study.Three-dimensional whole-lesion regions of interest were manually delineated along the tumor margins on portal venous CT images.Radiomics features were generated and selected to build a radiomics score using logistic regression analysis.Imaging features were evaluated by two radiologists independently.All these features were combined to establish clinico-radiological(CR)and clinico-radiological-radiomics(CRR)models by using multivariable logistic regression analysis.The diagnostic performance and clinical usefulness of the models were measured by receiver operating characteristic and decision curves,and the area under the curve(AUC)was determined.Their association with prognosis was evaluated using the Kaplan-Meier method.RESULTS Four radiomics features were selected to construct the radiomics score.In the multivariate analysis,alanine aminotransferase level,tumor size and tumor margin on portal venous phase images were found to be significant independent factors for predictingβ-arrestin1 phosphorylation-positive HCC and were included in the CR model.The CRR model integrating the radiomics score with clinico-radiological risk factors showed better discriminative performance(AUC=0.898,95%CI,0.820 to 0.977)than the CR model(AUC=0.794,95%CI,0.686 to 0.901;P=0.011),with increased clinical usefulness confirmed in both the training and validation cohorts using decision curve analysis.The risk ofβ-arrestin1 phosphorylation predicted by the CRR model was significantly associated with overall survival in the training and validation cohorts(log-rank test,P<0.05).CONCLUSION The radiomics signature is a reliable tool for evaluatingβ-arrestin1 phosphorylation which has prognostic significance for HCC patients,providing the potential to better identify patients who would benefit from sorafenib treatment.展开更多
The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein ...The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.展开更多
Chromosome segregation in mitosis is orchestrated by the interaction of the kinetochore with spindle microtubules. Our recent study shows that NEK2A interacts with MAD 1 at the kinetochore and possibly functions as a ...Chromosome segregation in mitosis is orchestrated by the interaction of the kinetochore with spindle microtubules. Our recent study shows that NEK2A interacts with MAD 1 at the kinetochore and possibly functions as a novel integrator of spindle checkpoint signaling. However, it is unclear how NEK2A regulates kinetochore-microtubule attachment in mitosis. Here we show that NEK2A phosphorylates human Sgo 1 and such phosphorylation is essential for faithful chromosome congression in mitosis. NEK2A binds directly to HsSgol in vitro and co-distributes with HsSgol to the kinetochore of mitotic cells. Our in vitro phosphorylation experiment demonstrated that HsSgo 1 is a substrate of NEK2A and the phosphorylation sites were mapped to Ser^14 and Ser^507 as judged by the incorporation of 32^P. Although such phosphorylation is not required for assembly of HsSgo 1 to the kinetochore, expression of non-phosphorylatable mutant HsSgo 1 perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. These findings reveal a key role for the NEK2A-mediated phosphorylation ofHsSgo 1 in orchestrating dynamic kinetochore-microtubule interaction. We propose that NEK2A-mediated phosphorylation of human Sgo 1 provides a link between centromeric cohesion and spindle microtubule attachment at the kinetochores.展开更多
Protein phosphorylation,one of the major post-translational modifications,plays a crucial role in cell signaling,DNA replication,gene expression and differentiation;and alters enzyme activity and other biological acti...Protein phosphorylation,one of the major post-translational modifications,plays a crucial role in cell signaling,DNA replication,gene expression and differentiation;and alters enzyme activity and other biological activities;and regulates cell proliferation and enlargement,phytohormone biosynthesis and signaling,plant disease resistance,and grain filling and quality during rice seed development.Research work on protein phosphorylation started in the 1950 s with the discovery of phosphorylase a and phosphorylase b which are phospho and dephospho forms of the same enzyme.Over the last decade,rice proteomics has accomplished tremendous progress in setting up techniques to proteome nearly all tissues,organs and organelles.The progress made in this field is evident in number of research works.However,research on rice protein phosphorylation is still at its infancy and there are still many unanswered questions.In this review,the general description of protein phosphorylation,including history,structure,frequency of occurrence and function,are discussed.This work also elucidates the different methods for identification,qualification and finally,the progress in rice phosphoproteome research and perspectives.展开更多
3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies sug...3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies suggested that statins, besides lowering cholesterol, may protect vessels by enhancing the activity of endothelial nitric oxide synthase (eNOS). In the present study, we investigated if simvastatin increases eNOS activity through its phosphorylation in 293 cells (293-eNOS) with stable expression of eNOS. The results showed that incubation of 293-eNOS cells with simvastatin (10 μm/L) for 2 h significantly increased in the activity of eNOS as shown by the conversion of L-arginine to L-citrulline (2889.70±201.51 versus 5630.18+218.75 pmol/min . mg proteins) (P〈0.01). Western blotting revealed that simvastatin increased phosphorylation of eNOS at 1177 (ser) and also 495 (thr) but did not affect the overall expression of eNOS or inducible NOS. Further study found that simvastatin raised phosphorylation levels of Akt and AMPK, and such effect could be antagonized by Akt inhibitor or AMPK inhibitor. These results suggest that simvastatin could stimulate,the activity of eNOS via its phosphorylation by Akt and AMPK, which provides a new mechanism, other than lipid-lowering effect, for the cardiovascular protection of statins.展开更多
Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over se...Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future.展开更多
The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel ph...The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.展开更多
Phosphorylation post-translational modification plays an important role in postmortem muscle quality traits. Adenosine triphosphate(ATP) is an energy source and a key substrate of phosphorylation which provides the ph...Phosphorylation post-translational modification plays an important role in postmortem muscle quality traits. Adenosine triphosphate(ATP) is an energy source and a key substrate of phosphorylation which provides the phosphatase groups to proteins in the presence of protein kinases. However, in postmortem muscle, the effects of ATP content on phosphorylation are poorly studied. The study investigated the effect of ATP on protein phosphorylation and degradation in postmortem ovine muscle. The ground muscle with/without additional ATP were treated/control groups and stored at 25 and 4℃, respectively. The ATP content led to different changes of p H value between the ATP-treated and control groups. The phosphorylation level of myofibrillar proteins was higher(P<0.05) in ATP-treated group compared to the control group at both temperatures, which suggested that ATP played a vital role in postmortem protein phosphorylation. A slower degradation rate of μ-calpain, desmin and troponin T was observed in the ATP-treated group which showed that there was a negative relationship between ATP level and the degradation of proteins. These observations clearly highlighted the role of ATP on the development of meat quality by regulating the phosphorylation and degradation of myofibrillar proteins in postmortem ovine muscle.展开更多
基金supported by the European Regional Development Funds-European Union(ERDF-EU),FATZHEIMER project(EU-LAC HEALTH 2020,16/T010131 to FRdF),“Una manera de hacer Europa”Ministerio de Economía,Industria y Competitividad,Gobierno de Espa?a,Programa Estatal de Investigación,Desarrollo e Innovación Orientada a los Retos de la Sociedad(RTC2019-007329-1 to FRdF)+2 种基金Consejería de Economía,Conocimiento y Universidad,Junta de Andalucía,Plan Andaluz de Investigación,Desarrollo e Innovación(P18TP-5194 to FRdF)Instituto de Salud CarlosⅢ(DTS22/00021 to FRdF)DMV(FI20/00227)holds a“PFIS’’predoctoral contract from the National System of Health,EU-ERDF-Instituto de Salud CarlosⅢ。
文摘Alzheimer’s disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer’s disease.The pathogenesis of Alzheimer’s disease is mainly mediated by the phosphorylation and aggregation of tau protein.Among the multiple causes of tau hyperphosphorylation,brain insulin resistance has generated much attention,and inositols as insulin sensitizers,are currently considered candidates for drug development.The present narrative review revises the interactions between these three elements:Alzheimer’s disease-tau-inositols,which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
基金supported by the National Natural Science Foundation of China (32070534,32370567,82371874,81830032,31872779,82071421,81873736)Key Field Research and Development Program of Guangdong Province (2018B030337001)+3 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006)Guangdong Basic and Applied Basic Research Foundation (2023B1515020031,2022A1515012301)Fundamental Research Funds for the Central Universities (Jinan University,21620358)。
文摘PTEN-induced putative kinase 1(PINK1),a mitochondrial kinase that phosphorylates Parkin and other proteins,plays a crucial role in mitophagy and protection against neurodegeneration.Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease.However,there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration.Additionally,PINK1 knockout pigs(Sus scrofa)do not appear to exhibit neurodegeneration.In our recent work involving non-human primates,we found that PINK1 is selectively expressed in primate brains,while absent in rodent brains.To extend this to other species,we used multiple antibodies to examine the expression of PINK1 in pig tissues.In contrast to tissues from cynomolgus monkeys(Macaca fascicularis),our data did not convincingly demonstrate detectable PINK1expression in pig tissues.Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation,as observed in cultured monkey cells.A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain.Consistently,PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD.These findings provide new evidence that PINK1expression is specific to primates,underscoring the importance of non-human primates in investigating PINK1function and pathology related to PINK1 deficiency.
文摘Objective YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors;differentiating between these roles may depend on the YAP1 phosphorylation pattern.The specific function of YAP1 in B cell acute lymphoblastic leukemia(B-ALL),however,is currently unclear.Thus,in the present study,the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets.Methods The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting,quantitative real-time polymerase chain reaction,flow cytometry,immunostaining,and nude mouse subcutaneous tumorigenesis experiments.Gene expression levels of Hippo pathway-related molecules before and after verteporfin(VP)treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells.Results Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels.YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells;YAP1 was distributed in the nuclei in NALM6 cells.Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase.Before and after VP treatment,the expression of the upstream gene LATS1 was upregulated;its overexpression promoted YAP1-Ser127 phosphorylation.Further,YAP1 was distributed in the plasma.Conclusion LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function;thus,VP,which targets this axis,may serve as a new therapeutic method for improving the outcomes for B-ALL patients.
基金supported by the National Natural Science Foundation of China(32001110)Training Program for Cultivating Highlevel Talents by the China Scholarship Council(2021lxjjw01)Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2021-KF-004)。
文摘Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.
基金National Natural Science Foundation of China(Grants Numbers 81902878 and 81971468).
文摘The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer(NSCLC).Although researchers have disclosed that interleukin 17(IL-17)can increase matrix metalloproteinases(MMPs)induction causing NSCLC cell metastasis,the underlying mechanism remains unclear.In the study,we found that IL-17 receptor A(IL-17RA),p300,p-STAT3,Ack-STAT3,and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17.p300,STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3,Ack-STAT3 and MMP19 level as well as the cell migration and invasion.Mechanism investigation revealed that STAT3 and p300 bound to the same region(−544 to−389 nt)of MMP19 promoter,and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity,p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17.Meanwhile,p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact,synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion.Besides,the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300,STAT3 or MMP19 gene plus IL-17 treatment,the nodule number,and MMP19,Ack-STAT3,or p-STAT3 production in the lung metastatic nodules were all alleviated.Collectively,these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation,which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.
基金supported by grants from the National Natural Science Foundation of China(Nos.81960732 and 82060733)the Natural Science Foundation of Jiangxi Province(No.20224BAB206111)+2 种基金the Science and Technology Plan of Jiangxi Provincial Health Commission(No.202311141)the Open Project of Jiangxi Provincial Key Laboratory of Drug Design and Evaluation(No.JKLDE-KF-2101)the Open Project of Key Laboratory of Modern Preparation of TCM,Ministry of Education,Jiangxi University of Chinese Medicine(No.TCM-201911).
文摘Objective:Cymbopogon citratus(DC.)Stapf is a medicinal and edible herb that is widely used for the treatment of gastric,nervous and hypertensive disorders.In this study,we investigated the cardioprotective effects and mechanisms of the essential oil,the main active ingredient of Cymbopogon citratus,on isoproterenol(ISO)-induced cardiomyocyte hypertrophy.Methods:The compositions of Cymbopogon citratus essential oil(CCEO)were determined by gas chromatography-mass spectrometry.Cardiomyocytes were pretreated with 16.9µg/L CCEO for 1 h followed by 10µmol/L ISO for 24 h.Cardiac hypertrophy-related indicators and NLRP3 inflammasome expression were evaluated.Subsequently,transcriptome sequencing(RNA-seq)and target verification were used to further explore the underlying mechanism.Results:Our results showed that the CCEO mainly included citronellal(45.66%),geraniol(23.32%),and citronellol(10.37%).CCEO inhibited ISO-induced increases in cell surface area and protein content,as well as the upregulation of fetal gene expression.Moreover,CCEO inhibited ISO-induced NLRP3 inflammasome expression,as evidenced by decreased lactate dehydrogenase content and downregulated mRNA levels of NLRP3,ASC,CASP1,GSDMD,and IL-1β,as well as reduced protein levels of NLRP3,ASC,pro-caspase-1,caspase-1(p20),GSDMD-FL,GSDMD-N,and pro-IL-1β.The RNA-seq results showed that CCEO inhibited the increase in the mRNA levels of 26 oxidative phosphorylation complex subunits in ISO-treated cardiomyocytes.Our further experiments confirmed that CCEO suppressed ISO-induced upregulation of mt-Nd1,Sdhd,mt-Cytb,Uqcrq,and mt-Atp6 but had no obvious effects on mt-Col expression.Conclusion:CCEO inhibits ISO-induced cardiomyocyte hypertrophy through the suppression of NLRP3 inflammasome expression and the regulation of several oxidative phosphorylation complex subunits.
文摘Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.
文摘Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.
文摘Dendritic cells (DCs) are the most potent antigen-presen ting cells that play crucial roles in the regulation of immune response. Triptol ide, an active component purified from the medicinal plant Tripterygium wilfor dii Hook F., has been demonstrated to act as a potent immunosuppressive drug c apab le of inhibiting T cell activation and proliferation. However, little is known a bout the effects of triptolide on DCs. The present study shows that triptolide d oes not affect phenotypic differentiation and LPS-induced maturation of murine DCs. But triptolide can dramatically reduce cell recovery by inducing apoptosis of DCs at concentration as low as 10 ng/ml, as demonstrated by phosphatidylserin e exposure, mitochondria potential decrease, and nuclear DNA condensation. Tript olide induces activation of p38 in DCs, which precedes the activation of caspase 3. SB203580, a specific kinase inhibitor for p38, can block the activation of caspase 3 and inhibit the resultant apoptosis of DCs. Our results suggest that t he anti-inflammatory and immunosuppressive activities of triptolide may be due, in part, to its apoptosis-inducing effects on DCs.
文摘Nowadays,the cumulative intake of glucocorticoids has become the most common pathogenic factor for non-traumatic osteonecrosis of the femoral head(ONFH).Apoptosis of osteoblasts is considered as the main reason of ONFH at the molecular level.Glycogen synthase kinase 3β(GSK3β)is an important regulator of cellular differentiation and apoptosis pathway,which can modulate the balance between osteoblasts and osteoclasts.Several studies have reported about its function in osteoporosis,but little is known about it in osteonecrosis.In our study,lipopolysaccharide and methylprednisolone were utilized to establish a rat ONFH model.The phosphorylation of GSK3βSer-9 was decreased in the model.Western blotting examination ofβ-catenin,Bcl-2,Bax and caspase-3 revealed that the osteoblasts were apoptotic.In dexamethasone(Dex)-incubated primary osteoblasts,the expression profile of GSK3βphosphorylation and apoptotic factors were consistent with those in the rat ONFH model.To further investigate the regulation of osteonecrosis caused by GSK3β,the expression and function of GSK3βwere inhibited in Dex-incubated primary osteoblasts.The knockdown of GSK3βby siRNA decreased the expression of Bax and cleaved caspase-3,but increased Bcl-2 andβ-catenin.On the other hand,selective inhibition of GSK3βfunction by LiCl counteracted the activation of caspase-3 induced by Dex.Our work is the first study about the GSK3P phosphorylation in ONFH,and provides evidence for further therapeutic methods.
基金supported by the Natural Science Foundation of Guangdong Province,No.2020A1515010090(to ZLZ)the Science and Technology Project Foundation of Guangzhou City,No.202002030004(to HZ).
文摘Astrocytes and microglia play an orchestrated role following spinal cord injury;however,the molecular mechanisms through which microglia regulate astrocytes after spinal cord injury are not yet fully understood.Herein,microglia were pharmacologically depleted and the effects on the astrocytic response were examined.We further explored the potential mechanisms involving the signal transducers and activators of transcription 3(STAT3)pathway.For in vivo experiments,we constructed a contusion spinal cord injury model in C57BL/6 mice.To deplete microglia,all mice were treated with colony-stimulating factor 1 receptor inhibitor PLX3397,starting 2 weeks prior to surgery until they were sacrificed.Cell proliferation was examined by 5-ethynyl-2-deoxyuridine(EdU)and three pivotal inflammatory cytokines were detected by a specific Bio-Plex Pro^(TM) Reagent Kit.Locomotor function,neuroinflammation,astrocyte activation and phosphorylated STAT3(pSTAT3,a maker of activation of STAT3 signaling)levels were determined.For in vitro experiments,a microglia and astrocyte coculture system was established,and the small molecule STA21,which blocks STAT3 activation,was applied to investigate whether STAT3 signaling is involved in mediating astrocyte proliferation induced by microglia.PLX3397 administration disrupted glial scar formation,increased inflammatory spillover,induced diffuse tissue damage and impaired functional recovery after spinal cord injury.Microglial depletion markedly reduced EdU+proliferating cells,especially proliferating astrocytes at 7 days after spinal cord injury.RNA sequencing analysis showed that the JAK/STAT3 pathway was downregulated in mice treated with PLX3397.Double immunofluorescence staining confirmed that PLX3397 significantly decreased STAT3 expression in astrocytes.Importantly,in vitro coculture of astrocytes and microglia showed that microglia-induced astrocyte proliferation was abolished by STA21 administration.These findings suggest that microglial depletion impaired astrocyte proliferation and astrocytic scar formation,and induced inflammatory diffusion partly by inhibiting STAT3 phosphorylation in astrocytes following spinal cord injury.
文摘AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a significant statistical significance (P〈 0.01). CONCLUSION: IL-1β has a direct action on hepatic fibrosis by up-regulating TIMMP-1 mRNA expression in ratessionin in rate HSC.JNK and p38 mitogen-activated protein kinases (MAPKs) are involved in IL-1β-induced TIMMP-1 gene expression, and play a distinct role in this process, indicating that p38 and .INK pathways cooperatively mediate TIMP-1 mRNA expression in rat HSC.
基金Supported by the Science and Technology Support Program of Sichuan Province,No.2021YFS0144 and No.2021YFS0021China Postdoctoral Science Foundation,No.2021M692289National Natural Science Foundation of China,No.81971571。
文摘BACKGROUND The phosphorylation status ofβ-arrestin1 influences its function as a signal strongly related to sorafenib resistance.This retrospective study aimed to develop and validate radiomics-based models for predictingβ-arrestin1 phosphorylation in hepatocellular carcinoma(HCC)using whole-lesion radiomics and visual imaging features on preoperative contrast-enhanced computed tomography(CT)images.AIM To develop and validate radiomics-based models for predictingβ-arrestin1 phosphorylation in HCC using radiomics with contrast-enhanced CT.METHODS Ninety-nine HCC patients(training cohort:n=69;validation cohort:n=30)receiving systemic sorafenib treatment after surgery were enrolled in this retrospective study.Three-dimensional whole-lesion regions of interest were manually delineated along the tumor margins on portal venous CT images.Radiomics features were generated and selected to build a radiomics score using logistic regression analysis.Imaging features were evaluated by two radiologists independently.All these features were combined to establish clinico-radiological(CR)and clinico-radiological-radiomics(CRR)models by using multivariable logistic regression analysis.The diagnostic performance and clinical usefulness of the models were measured by receiver operating characteristic and decision curves,and the area under the curve(AUC)was determined.Their association with prognosis was evaluated using the Kaplan-Meier method.RESULTS Four radiomics features were selected to construct the radiomics score.In the multivariate analysis,alanine aminotransferase level,tumor size and tumor margin on portal venous phase images were found to be significant independent factors for predictingβ-arrestin1 phosphorylation-positive HCC and were included in the CR model.The CRR model integrating the radiomics score with clinico-radiological risk factors showed better discriminative performance(AUC=0.898,95%CI,0.820 to 0.977)than the CR model(AUC=0.794,95%CI,0.686 to 0.901;P=0.011),with increased clinical usefulness confirmed in both the training and validation cohorts using decision curve analysis.The risk ofβ-arrestin1 phosphorylation predicted by the CRR model was significantly associated with overall survival in the training and validation cohorts(log-rank test,P<0.05).CONCLUSION The radiomics signature is a reliable tool for evaluatingβ-arrestin1 phosphorylation which has prognostic significance for HCC patients,providing the potential to better identify patients who would benefit from sorafenib treatment.
基金a grant from the National Natural Sciences Foundation of China (No. 30571950)National Key Basic Research Program Foundation (N0.2002CB513107).
文摘The reversing effect of wild-type PTEN gene on resistance of C 13K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected C13K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C 13K cells were 2.04 ± 0.10, 0.94± 0.04 respectively and the expression of p-Akt protein ( 0.94± 0.07) was lower than those in control groups (1.68 ±0.14, 1.66± 0.10) (P〈 0.05). The IC50 of DDP to C 13 K cells transfected with PTEN (7.2± 0.3 la mol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 lamol/1, 13.0±0.3 lamol/L) (P〈0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65___0.87)%, (18.61 ±0.70)% and (15.28±0.80)% respectively, and the difference was statistically significant (P〈0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the expression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C 13K with multidrug-resistance by decreasing the expression of p-Akt.
基金We thank members of our group for insightful discussion during the course of this study.This work was supported by grants from Chinese Academy of Science(KSCX1-YW-R65,KSCX2-YW-H10)National Basic Research Program of China(2002CB713700)+4 种基金Hi-Tech Research and Development Program of China(2001AA215331)Chinese Minister of Education(20020358051 to XY,PCSIRT0413 to XD)National Natural Science Foundation of China(39925018,30270293 to XY,30500183 to XD,30600222 to JY)National Institutes of Health(USA)(DK56292,CA92080)to XY(a Georgia Cancer Coalition Eminent Scholar)JY was supported by China Postdoctor(2005037560).
文摘Chromosome segregation in mitosis is orchestrated by the interaction of the kinetochore with spindle microtubules. Our recent study shows that NEK2A interacts with MAD 1 at the kinetochore and possibly functions as a novel integrator of spindle checkpoint signaling. However, it is unclear how NEK2A regulates kinetochore-microtubule attachment in mitosis. Here we show that NEK2A phosphorylates human Sgo 1 and such phosphorylation is essential for faithful chromosome congression in mitosis. NEK2A binds directly to HsSgol in vitro and co-distributes with HsSgol to the kinetochore of mitotic cells. Our in vitro phosphorylation experiment demonstrated that HsSgo 1 is a substrate of NEK2A and the phosphorylation sites were mapped to Ser^14 and Ser^507 as judged by the incorporation of 32^P. Although such phosphorylation is not required for assembly of HsSgo 1 to the kinetochore, expression of non-phosphorylatable mutant HsSgo 1 perturbed chromosome congression and resulted in a dramatic increase in microtubule attachment errors, including syntelic and monotelic attachments. These findings reveal a key role for the NEK2A-mediated phosphorylation ofHsSgo 1 in orchestrating dynamic kinetochore-microtubule interaction. We propose that NEK2A-mediated phosphorylation of human Sgo 1 provides a link between centromeric cohesion and spindle microtubule attachment at the kinetochores.
文摘Protein phosphorylation,one of the major post-translational modifications,plays a crucial role in cell signaling,DNA replication,gene expression and differentiation;and alters enzyme activity and other biological activities;and regulates cell proliferation and enlargement,phytohormone biosynthesis and signaling,plant disease resistance,and grain filling and quality during rice seed development.Research work on protein phosphorylation started in the 1950 s with the discovery of phosphorylase a and phosphorylase b which are phospho and dephospho forms of the same enzyme.Over the last decade,rice proteomics has accomplished tremendous progress in setting up techniques to proteome nearly all tissues,organs and organelles.The progress made in this field is evident in number of research works.However,research on rice protein phosphorylation is still at its infancy and there are still many unanswered questions.In this review,the general description of protein phosphorylation,including history,structure,frequency of occurrence and function,are discussed.This work also elucidates the different methods for identification,qualification and finally,the progress in rice phosphoproteome research and perspectives.
基金supported by grants from National Natural Sciences Foundation of China (No. 30430320 and 30770882)National 973 Project (No. 2007CB512004)
文摘3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins are a kind of lipid-lowering agents and have been used for the prevention and treatment of Cardiovascular diseases. Recent studies suggested that statins, besides lowering cholesterol, may protect vessels by enhancing the activity of endothelial nitric oxide synthase (eNOS). In the present study, we investigated if simvastatin increases eNOS activity through its phosphorylation in 293 cells (293-eNOS) with stable expression of eNOS. The results showed that incubation of 293-eNOS cells with simvastatin (10 μm/L) for 2 h significantly increased in the activity of eNOS as shown by the conversion of L-arginine to L-citrulline (2889.70±201.51 versus 5630.18+218.75 pmol/min . mg proteins) (P〈0.01). Western blotting revealed that simvastatin increased phosphorylation of eNOS at 1177 (ser) and also 495 (thr) but did not affect the overall expression of eNOS or inducible NOS. Further study found that simvastatin raised phosphorylation levels of Akt and AMPK, and such effect could be antagonized by Akt inhibitor or AMPK inhibitor. These results suggest that simvastatin could stimulate,the activity of eNOS via its phosphorylation by Akt and AMPK, which provides a new mechanism, other than lipid-lowering effect, for the cardiovascular protection of statins.
文摘Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future.
文摘The limited CO_(2)content in aqueous solution and low adsorption amount of CO_(2)on catalyst surface lead to poor photocatalytic CO_(2)reduction activity and selectivity.Herein,the design and fabrication of a novel photocatalytic architecture is reported,accomplished via chemical vapor deposition of polymeric carbon nitride on carbon paper.The as-obtained samples with a hydrophobic surface exhibit excellent CO_(2)transport and adsorption ability,as well as the building of triphase air-liquid-solid(CO_(2)-H_(2)O-catalyst)joint interfaces,eventually resulting in the inhibition of H2 evolution and great promotion of CO_(2)reduction with a selectivity of 78.6%.The addition of phosphate to reaction environment makes further improvement of CO_(2)photoreduction into carbon fuels with a selectivity of 93.8%and an apparent quantum yield of 0.4%.This work provides new insight for constructing efficient photocatalytic architecture of CO_(2)photoreduction in aqueous solution and demonstrates that phosphate could play a key role in this process.
基金financial support from the National Natural Science Foundation of China (31771995)the earmarked fund for China Agriculture Research System (CARS-38)the Agricultural Science and Technology Innovation Program, Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IFST)。
文摘Phosphorylation post-translational modification plays an important role in postmortem muscle quality traits. Adenosine triphosphate(ATP) is an energy source and a key substrate of phosphorylation which provides the phosphatase groups to proteins in the presence of protein kinases. However, in postmortem muscle, the effects of ATP content on phosphorylation are poorly studied. The study investigated the effect of ATP on protein phosphorylation and degradation in postmortem ovine muscle. The ground muscle with/without additional ATP were treated/control groups and stored at 25 and 4℃, respectively. The ATP content led to different changes of p H value between the ATP-treated and control groups. The phosphorylation level of myofibrillar proteins was higher(P<0.05) in ATP-treated group compared to the control group at both temperatures, which suggested that ATP played a vital role in postmortem protein phosphorylation. A slower degradation rate of μ-calpain, desmin and troponin T was observed in the ATP-treated group which showed that there was a negative relationship between ATP level and the degradation of proteins. These observations clearly highlighted the role of ATP on the development of meat quality by regulating the phosphorylation and degradation of myofibrillar proteins in postmortem ovine muscle.