Titanium based titanium dioxide (TiO2) nanotube arrays were prepared by electrochemical oxidation method, their microstructures were characterized, and the effects of sintering temperature and initial dye concentrat...Titanium based titanium dioxide (TiO2) nanotube arrays were prepared by electrochemical oxidation method, their microstructures were characterized, and the effects of sintering temperature and initial dye concentration and pH value on degradation performance of TiO2 nanotubc arrays wcrc investigated with methyl orange as a degradation object. The results showed that TiO2 nanotube arrays prepared by sintering at 500 ℃ exhibited good morphology and the highest photocata- lyric degradation efficiency; the degradation efficiency of the TiO2 nano material (500 ℃ ) to high concentration dye was higher than that to low concentration dye; the TiO2 nanotube array (500 ℃ ) exhibited higher degradation efficiency on dye solution at the pH of 3 than on that at the pH of 5.77 ; and the degradation efficien- cy of the TiO2 nanotube array (500 ℃) to 10 mg/L methyl orange solution (pH =3) reached 85.2%.展开更多
基金Supported by Fund for Young and Middle-aged Teachers in Fujian Province(JA15880)National Spark Program Project(2015GA721002)
文摘Titanium based titanium dioxide (TiO2) nanotube arrays were prepared by electrochemical oxidation method, their microstructures were characterized, and the effects of sintering temperature and initial dye concentration and pH value on degradation performance of TiO2 nanotubc arrays wcrc investigated with methyl orange as a degradation object. The results showed that TiO2 nanotube arrays prepared by sintering at 500 ℃ exhibited good morphology and the highest photocata- lyric degradation efficiency; the degradation efficiency of the TiO2 nano material (500 ℃ ) to high concentration dye was higher than that to low concentration dye; the TiO2 nanotube array (500 ℃ ) exhibited higher degradation efficiency on dye solution at the pH of 3 than on that at the pH of 5.77 ; and the degradation efficien- cy of the TiO2 nanotube array (500 ℃) to 10 mg/L methyl orange solution (pH =3) reached 85.2%.