Malate is the first stable product after CO2 is fixed in NADP-dependent malic enzyme (NADP-ME) type of C4 plants, which transfers CO2 and the reducing equivalent from mesophyll cell (MC) to vascular bundle sheath cell...Malate is the first stable product after CO2 is fixed in NADP-dependent malic enzyme (NADP-ME) type of C4 plants, which transfers CO2 and the reducing equivalent from mesophyll cell (MC) to vascular bundle sheath cell (BSC) chloroplasts and affects the redox state of BSC. The aim of this experiment is to investigate the effect of exogenous malate on the activity of photosystem II (PS II) in C4 and C3 plants. The leaf discs from the 5th fully expanded leaves of maize (NADP-ME type C4 plants) and the 10th fully expanded leaves of tobacco (C3 plants) were treated with malate of 50, 100 μM and the chlorophyll fluorescence parameters were measured. Malate treatments decreased the photochemical reaction efficiency (FV/FM) in maize leaves, as a result of rising in initial fluorescence (FO) and decreasing in maximal fluorescence (FM). The number of active PS II reaction center (RC) per excited cross section (RC/CS) declined in malate-treated maize, suggesting that malate inactivated PS II RC. Malate treatments also increased Wk, representing the severity of oxygen-evolving complex (OEC) damage, and decreased the rate of photosynthetic oxygen evolution. We conclude that exogenous malate regulates the activity and structure of PS II in C4 plant maize. No significant changes in the activity of PS II were observed in malate-treated C3 plant tobacco. It is suggested that the short term malate treatment will inhibit PS II of leaves which have C4 anatomy and C4 enzymes.展开更多
Because the transient O3 injury of leaves is lost with time, the evaluation of O3 effect on the maximum quantum efficiency of PSII (Fv/Fm) is difficult. Thus, the authors examined Fv/Fm in rice leaves exposed to diffe...Because the transient O3 injury of leaves is lost with time, the evaluation of O3 effect on the maximum quantum efficiency of PSII (Fv/Fm) is difficult. Thus, the authors examined Fv/Fm in rice leaves exposed to different O3 concentrations (0, 0.1, and 0.3 cm3·m-3, expressed as O0, O0.1, and O0.3) under different dark adaptation periods (0, 1, 5, 10, 20, and 30 min, expressed as D0, D1, D5, D10, D20, and D30) to ascertain its optimum time span. Fv/Fm was inhibited by O3;however in the O0 and O0.1 plants, it recovered during dark adaptation. In the O0.3 plants, Fv/Fm decreased gradually with time. F0 was found to be increased by O3, and it increased further in the O0.3 plants during dark adaptation. Under a high light intensity, Fm was decreased by O3, and the O3-induced damage to Fv/Fm was therefore more pronounced. However, the sensitivity of展开更多
In this study, we investigated the effects of exogenous calcium nitrate on photoinhibition and thylakoid protein level in peanut plants under heat (40 ℃) and high irradiance (HI) (1,200 mmol/m2 per s) stress. C...In this study, we investigated the effects of exogenous calcium nitrate on photoinhibition and thylakoid protein level in peanut plants under heat (40 ℃) and high irradiance (HI) (1,200 mmol/m2 per s) stress. Compared with control seedlings (cultivated in 0 mmol/L Ca(NO3)2 medium), the maximal photochemical efficiency of photosystem II (PSII) in Ca2t‐treated plants showed a slight decrease after 5 h stress, accompanied by lower degree of PSII closure (1‐qP), higher non‐photochemical quenching, and lower level of membrane damage. Ca2t inhibitors were used to analyze the varieties of antioxidant enzymes activity and PSII proteins. These results indicated that Ca2t could protect the subunits of PSII reaction centers from photoinhibition by reducing the generation of reactive oxygen species. In the presence of both ethyleneglycol‐bis(2‐aminoethylether)‐tetraacetic acid and ascorbic acid (AsA), the net degradation of the damaged D1 protein was faster than that only treated with AsA. Our previous study showed that either the transcriptional or the translational level of calmodulin was obviously higher in Ca2t‐treated plants. These results suggested that, under heat and HI stress, the Ca2t signal transduction pathway can al eviate the photoinhibition through regulating the protein repair process besides an enhanced capacity for scavenging reactive oxygen species.展开更多
The most amazing chemistry is the light-driven water splitting reaction occurred in the oxygen-evolving complex of phototsystem II in higher plants, green algae, and cyanobacteria. Mn, in the form of Mn4CaOs cluster i...The most amazing chemistry is the light-driven water splitting reaction occurred in the oxygen-evolving complex of phototsystem II in higher plants, green algae, and cyanobacteria. Mn, in the form of Mn4CaOs cluster in photosystem II, is responsible for the catalytic water splitting reaction as well as plays roles in photosystem II dynamics to irradiation and temperatures. Manganese hypothesis of UV-initiated photoinhibition as a direct target is established, and thermal inactivation of photosystem II involves the valence and structural changes of manganese. Recent progresses in understanding the roles of manganese in photoinhibition especially under UV light and in thermal inactivation including elevated temperatures using synthetic models and native PS II complexes are summarized and evaluated. Potential problems and possible solutions are discussed and presented.展开更多
The techniques of oxygen electrode polarography and Fourier transform infrared (FT IR) spectroscopy were employed to explore the involvement of digalactosyl diacylglycerol (DGDG) in functional and structural roles in...The techniques of oxygen electrode polarography and Fourier transform infrared (FT IR) spectroscopy were employed to explore the involvement of digalactosyl diacylglycerol (DGDG) in functional and structural roles in the photosystem II core complex (PSIICC). It was shown that DGDG exhibited the ability to stimulate the oxygen evolution in PSIICC, which was accompanied by the changes in the structures of PSIICC proteins. The results revealed that there existed hydrogen bonding interactions between DGDG molecules and PSIICC proteins. It is most likely that the sites of PSIICC interaction with DGDG are in the extrinsic protein of 33 kDa.展开更多
Photosystem II (PSII) is a photoactive protein that can drive water oxidation under light irradiation. Recently, PSII has been broadly investigated with the high demand on the bioenergy. Here, we demonstrate a facil...Photosystem II (PSII) is a photoactive protein that can drive water oxidation under light irradiation. Recently, PSII has been broadly investigated with the high demand on the bioenergy. Here, we demonstrate a facile approach for the fabrication of a photoactive electrode by the integration of PSII with quantum dots (QDs)/polyelectrolyte multilayers. The assembled QDs and PSII film with a polyelectrolyte based substrate via layer-by-layer assembly can remain the photoactivity of the PSII and broaden the absorption spectrum of PSII to produce a high photocur- rent yield. The co-assembly exhibits an obviously enhanced photocurrent under UV light irradiation. The proposed strategy can be considered for the reference and usage of PSII toward the solar energy conversion.展开更多
Photosystem II(PSII),as a multiple-subunit chloroplast membrane-associated pigment-protein complex on the thylakoid membrane,is a primary target of light-induced photodamage.However,the overall molecular details of th...Photosystem II(PSII),as a multiple-subunit chloroplast membrane-associated pigment-protein complex on the thylakoid membrane,is a primary target of light-induced photodamage.However,the overall molecular details of the conformation and composition dynamics of PSII photodamage are still controversial.In this study,we investigated systematically the dynamic conformation,degradation,and oxidation processes of PSII photodamage by integrating chemical cross-linking and top-down proteomics strategies.展开更多
So far it is unclear whether the release of oxygen-evolving complex (OEC) subunits including PsbO, PsbP, and PsbQ proteins is affected by the phosphorylation of photosystem II (PSII) membranes under light stress. ...So far it is unclear whether the release of oxygen-evolving complex (OEC) subunits including PsbO, PsbP, and PsbQ proteins is affected by the phosphorylation of photosystem II (PSII) membranes under light stress. In this work, different phosphorylated PSII membranes were obtained from spinach. Phosphorylation partially suppressed the release of PsbO, PsbP, and PsbQ proteins from PSII membranes under light stress. Reactive oxygen species including superoxide anion, hydrogen peroxide and hydroxyl radical, were involved in the release of a small part of PsbO protein, but not in the release of PsbP and PsbQ proteins in the non-phosphorylated and phosphorylated PSII membranes. All of the results suggested that the release of PsbO, PsbP, and PsbQ proteins was partially regulated by phosphorylation in PSII membranes, and the role of reactive oxygen species in the release of OEC subunits in non-phosphorylated PSII membranes was the same as in phosphorylated PSII membranes.展开更多
The structural aspects in the interaction of phosphatidylglycerol (PG) with photosystem II (PSIl), mainly the effect of PQ on conformation and microenvironment of tyrosine residues of PSIl proteins were studied by Fou...The structural aspects in the interaction of phosphatidylglycerol (PG) with photosystem II (PSIl), mainly the effect of PQ on conformation and microenvironment of tyrosine residues of PSIl proteins were studied by Fourier transform infrared (FTIR) spectroscopy. It was found that the binding of PG to PSIl particle induces changes in the conformation and micropolarity of phenol ring in the tyrosine residues. In other words, the PG effect on the PSIl results in blue shift of the stretch vibrational band in the phenol ring from 1620 to 1500 cm-1 with the enhancement of the absorb-ance intensity. Additionally, a new spectrum of hydrogen bond was also observed. The results imply that the hydrogen-bond formation between the OH group of phenol and one of PG might cause changes in the structures of tyrosine residues in PSIl proteins.展开更多
The light-harvesting chlorophyll a/b-protein complex plays an important role in photosynthesis of plants. A full-length cDNA of light-harvesting chlorophyll a/b (cab) gene was cloned from the first strand of Moso (...The light-harvesting chlorophyll a/b-protein complex plays an important role in photosynthesis of plants. A full-length cDNA of light-harvesting chlorophyll a/b (cab) gene was cloned from the first strand of Moso (Phyllostachys edulis) cDNA through RT-PCR and RACE methods, named as cabPhEIO (cab gene 10 from Ph. edulis). The length of cab- PhEIO (GenBank accession number: EU118754) is 1 151 bp, which contains an open reading frame encoding 283 amino acids from 81st to 932nd position. The bioinformatics analysis indicated that the protein encoded by cab-PhElO had a chlorophll a/b binding domain (83rd -247th position), two protein kinase C-phosphorylation sites, three Nmyristoylation sites and a yia A/B double helix domain.The amino acid sequence of cab-PhElO showed high similarity with the cab genes of Oryza sativa, Zea mays, Hordeum vulgare, and Vitis vinifera, more than 80%, respectively, which indicated that cab-PhElO gene belongs to lhcb5 gene family.展开更多
Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the re...Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m-2 s-1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETR11) and in PSI (ETR1) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (q^No) and limitation of donor side in PSI (φND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETR, and ETR1 by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.展开更多
Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibite...Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibited by drought.PhotosystemⅡ(PSⅡ)is considered the main attack target when photosynthesis is affected by drought.To clarify how PSⅡcomponents of the ephemeral plant Erodium oxyrhinchum(grown in the Gurbantunggut Desert,China)respond to drought treatment,we evaluated the functional activity of PSII by determining chlorophyll fluorescence and gas exchange parameters under different drought treatment levels(control(400 mL),moderate drought(200 mL),and severe drought(100 m L)).Under moderate drought treatment,significant decreases were found in net photosynthetic rate(Pn),effective quantum yield of PSII(Y(Ⅱ)),relative electron transfer rate of PSII(rETR(Ⅱ)),oxygen-releasing complex,probability of an absorbed exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(Φ(E_(o))),probability of a trapped exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(ψ(E_(o))),and performance index of PSⅡ(PI_(abs)).Compared to control treatment,marked increases were observed in water use efficiency(WUE),relative variable fluorescence at the J step(V_(J)),initial fluorescence(F_(o)),and dissipated energy per active reaction center(DI_(o)/RC)under moderate drought treatment,but there were no substantial changes in semi-saturated light intensity(I_(K)),active reaction centers per cross-section(RC/CS),and total performance index of PSII and PSI(PI_(total),where PSI is the photosystemⅠ).The changes of the above parameters under severe drought treatment were more significant than those under moderate drought treatment.In addition,severe drought treatment significantly increased the absorbed energy per active reaction center(ABS/RC)and trapping energy per active reaction center(TR_(o)/RC)but decreased the energy transmission connectivity of PSⅡcomponents,RC/CS,and PI_(total),compared to moderate drought and control treatments.Principle component analysis(PCA)revealed similar information according to the grouping of parameters.Moderate drought treatment was obviously characterized by RC/CS parameter,and the values of F_(o),V_(J),ABS/RC,DI_(o)/RC,and TR_(o)/RC showed specific reactions to severe drought treatment.These results demonstrated that moderate drought treatment reduced the photochemical activity of PSII to a certain extent but E.oxyrhinchum still showed strong adaptation against drought treatment,while severe drought treatment seriously damaged the structure of PSⅡ.The results of this study are useful for further understanding the adaptations of ephemeral plants to different water conditions and can provide a reference for the selection of relevant parameters for photosynthesis measurements of large samples in the field.展开更多
To investigate the effect of reduced salinity on diatoms’ capacity to cope with changing ultraviolet radiation(U VR) and photosynthetically active radiation(PAR),Skeletonema costatum was grown in a range of salinity(...To investigate the effect of reduced salinity on diatoms’ capacity to cope with changing ultraviolet radiation(U VR) and photosynthetically active radiation(PAR),Skeletonema costatum was grown in a range of salinity(15,25,and 35).The photo system Ⅱ(PSⅡ) function was analyzed by increasing PAR and UVR to mimic a mixing event in turbulent waters.The re sults show that high UVR exposure significantly reduced PSII activity,especially in cells grown at low salinity.UVR,but not salinity,stimulated the ’removal’ rate of PSII protein PsbA.Salinity alone,in the range of 15 to 35,did not regulate PSⅡ acceptor region;however,the low salinity+UVR treatment decreased the energy flux for electron transport per PSⅡ reaction center in S.costatum.It showed that low salinity exacerbated the damaging effect of UVR on PSⅡ function in S.costatum by suppressing Psb A protein synthe sis and modifying the photochemistry of PSⅡ.Although higher catalase(CAT) activity and NPQs were induced,they were unable to prevent the combined damage effect of low salinity+UVR.Our findings indicate that reduced salinity and increased UVR potentially affect the abundance and distribution of S.costatum with the escalation of climate disturbances.展开更多
The excitation energy transfer from phycobiliproteins to thylakoid PSII of higher plants was investigated. When incubated with spinach thylakoids, phycobiliproteins isolated from red and blue- green algae transferred ...The excitation energy transfer from phycobiliproteins to thylakoid PSII of higher plants was investigated. When incubated with spinach thylakoids, phycobiliproteins isolated from red and blue- green algae transferred light energy absorbed to spinach PSII. The efficiency of energy transfer was dependent on the kind of phycobiliproteins used. If spinach thylakoids were replaced by the thylakoids of Brassica chinensis, R phycoerythin or C- phycocyanin did not transfer their excitation energy to PSII of Brassica chinensis unless allophycocyanin was present.展开更多
文摘Malate is the first stable product after CO2 is fixed in NADP-dependent malic enzyme (NADP-ME) type of C4 plants, which transfers CO2 and the reducing equivalent from mesophyll cell (MC) to vascular bundle sheath cell (BSC) chloroplasts and affects the redox state of BSC. The aim of this experiment is to investigate the effect of exogenous malate on the activity of photosystem II (PS II) in C4 and C3 plants. The leaf discs from the 5th fully expanded leaves of maize (NADP-ME type C4 plants) and the 10th fully expanded leaves of tobacco (C3 plants) were treated with malate of 50, 100 μM and the chlorophyll fluorescence parameters were measured. Malate treatments decreased the photochemical reaction efficiency (FV/FM) in maize leaves, as a result of rising in initial fluorescence (FO) and decreasing in maximal fluorescence (FM). The number of active PS II reaction center (RC) per excited cross section (RC/CS) declined in malate-treated maize, suggesting that malate inactivated PS II RC. Malate treatments also increased Wk, representing the severity of oxygen-evolving complex (OEC) damage, and decreased the rate of photosynthetic oxygen evolution. We conclude that exogenous malate regulates the activity and structure of PS II in C4 plant maize. No significant changes in the activity of PS II were observed in malate-treated C3 plant tobacco. It is suggested that the short term malate treatment will inhibit PS II of leaves which have C4 anatomy and C4 enzymes.
文摘Because the transient O3 injury of leaves is lost with time, the evaluation of O3 effect on the maximum quantum efficiency of PSII (Fv/Fm) is difficult. Thus, the authors examined Fv/Fm in rice leaves exposed to different O3 concentrations (0, 0.1, and 0.3 cm3·m-3, expressed as O0, O0.1, and O0.3) under different dark adaptation periods (0, 1, 5, 10, 20, and 30 min, expressed as D0, D1, D5, D10, D20, and D30) to ascertain its optimum time span. Fv/Fm was inhibited by O3;however in the O0 and O0.1 plants, it recovered during dark adaptation. In the O0.3 plants, Fv/Fm decreased gradually with time. F0 was found to be increased by O3, and it increased further in the O0.3 plants during dark adaptation. Under a high light intensity, Fm was decreased by O3, and the O3-induced damage to Fv/Fm was therefore more pronounced. However, the sensitivity of
基金supported by the Natural Science Foundation of Shandong Province (ZR2009DZ007 and ZR2011CQ042)the Supporting Plan of National Science and Technology of China (2014BAD11B04)+1 种基金the earmarked fund for Modern Agro-industry Technology Research System (CARS-14)Shandong Major Projects of Independent Innovation Achievement Transformation (2012ZHZXIA0418)
文摘In this study, we investigated the effects of exogenous calcium nitrate on photoinhibition and thylakoid protein level in peanut plants under heat (40 ℃) and high irradiance (HI) (1,200 mmol/m2 per s) stress. Compared with control seedlings (cultivated in 0 mmol/L Ca(NO3)2 medium), the maximal photochemical efficiency of photosystem II (PSII) in Ca2t‐treated plants showed a slight decrease after 5 h stress, accompanied by lower degree of PSII closure (1‐qP), higher non‐photochemical quenching, and lower level of membrane damage. Ca2t inhibitors were used to analyze the varieties of antioxidant enzymes activity and PSII proteins. These results indicated that Ca2t could protect the subunits of PSII reaction centers from photoinhibition by reducing the generation of reactive oxygen species. In the presence of both ethyleneglycol‐bis(2‐aminoethylether)‐tetraacetic acid and ascorbic acid (AsA), the net degradation of the damaged D1 protein was faster than that only treated with AsA. Our previous study showed that either the transcriptional or the translational level of calmodulin was obviously higher in Ca2t‐treated plants. These results suggested that, under heat and HI stress, the Ca2t signal transduction pathway can al eviate the photoinhibition through regulating the protein repair process besides an enhanced capacity for scavenging reactive oxygen species.
文摘The most amazing chemistry is the light-driven water splitting reaction occurred in the oxygen-evolving complex of phototsystem II in higher plants, green algae, and cyanobacteria. Mn, in the form of Mn4CaOs cluster in photosystem II, is responsible for the catalytic water splitting reaction as well as plays roles in photosystem II dynamics to irradiation and temperatures. Manganese hypothesis of UV-initiated photoinhibition as a direct target is established, and thermal inactivation of photosystem II involves the valence and structural changes of manganese. Recent progresses in understanding the roles of manganese in photoinhibition especially under UV light and in thermal inactivation including elevated temperatures using synthetic models and native PS II complexes are summarized and evaluated. Potential problems and possible solutions are discussed and presented.
文摘The techniques of oxygen electrode polarography and Fourier transform infrared (FT IR) spectroscopy were employed to explore the involvement of digalactosyl diacylglycerol (DGDG) in functional and structural roles in the photosystem II core complex (PSIICC). It was shown that DGDG exhibited the ability to stimulate the oxygen evolution in PSIICC, which was accompanied by the changes in the structures of PSIICC proteins. The results revealed that there existed hydrogen bonding interactions between DGDG molecules and PSIICC proteins. It is most likely that the sites of PSIICC interaction with DGDG are in the extrinsic protein of 33 kDa.
基金This work was supported financially by the National Natural Science Foundation of China (Nos. 21433010, 21320102004, 21321063) and the National Basic Research Program of China (973 Program, Nos. 2013CB932800, 2013YQ160551)
文摘Photosystem II (PSII) is a photoactive protein that can drive water oxidation under light irradiation. Recently, PSII has been broadly investigated with the high demand on the bioenergy. Here, we demonstrate a facile approach for the fabrication of a photoactive electrode by the integration of PSII with quantum dots (QDs)/polyelectrolyte multilayers. The assembled QDs and PSII film with a polyelectrolyte based substrate via layer-by-layer assembly can remain the photoactivity of the PSII and broaden the absorption spectrum of PSII to produce a high photocur- rent yield. The co-assembly exhibits an obviously enhanced photocurrent under UV light irradiation. The proposed strategy can be considered for the reference and usage of PSII toward the solar energy conversion.
基金The authors gratefully acknowledged the financial supports from the National Key R&D Program of China(nos.2016YFF0200504,2017YFA0503700,and 2018YFA0900702)the National Natural Science Foundation of China(nos.91853101 and 31470339)+3 种基金grants from the Chinese Academy of Sciences(nos.ZDBS-LYSLH032 and XDB17000000)the Liaoning Province(no.2019-YQ-07)the Dalian Institute of Chemical Physics(DICPno.DICP I202007).
文摘Photosystem II(PSII),as a multiple-subunit chloroplast membrane-associated pigment-protein complex on the thylakoid membrane,is a primary target of light-induced photodamage.However,the overall molecular details of the conformation and composition dynamics of PSII photodamage are still controversial.In this study,we investigated systematically the dynamic conformation,degradation,and oxidation processes of PSII photodamage by integrating chemical cross-linking and top-down proteomics strategies.
基金Project supported by the National Natural Science Foundation of China (Nos. 20875093 and 90813021) and the Pilot Project of Knowledge Innovation Program of the Chinese Academy of Sciences (No. KJCX2-SW-w29).
文摘So far it is unclear whether the release of oxygen-evolving complex (OEC) subunits including PsbO, PsbP, and PsbQ proteins is affected by the phosphorylation of photosystem II (PSII) membranes under light stress. In this work, different phosphorylated PSII membranes were obtained from spinach. Phosphorylation partially suppressed the release of PsbO, PsbP, and PsbQ proteins from PSII membranes under light stress. Reactive oxygen species including superoxide anion, hydrogen peroxide and hydroxyl radical, were involved in the release of a small part of PsbO protein, but not in the release of PsbP and PsbQ proteins in the non-phosphorylated and phosphorylated PSII membranes. All of the results suggested that the release of PsbO, PsbP, and PsbQ proteins was partially regulated by phosphorylation in PSII membranes, and the role of reactive oxygen species in the release of OEC subunits in non-phosphorylated PSII membranes was the same as in phosphorylated PSII membranes.
文摘The structural aspects in the interaction of phosphatidylglycerol (PG) with photosystem II (PSIl), mainly the effect of PQ on conformation and microenvironment of tyrosine residues of PSIl proteins were studied by Fourier transform infrared (FTIR) spectroscopy. It was found that the binding of PG to PSIl particle induces changes in the conformation and micropolarity of phenol ring in the tyrosine residues. In other words, the PG effect on the PSIl results in blue shift of the stretch vibrational band in the phenol ring from 1620 to 1500 cm-1 with the enhancement of the absorb-ance intensity. Additionally, a new spectrum of hydrogen bond was also observed. The results imply that the hydrogen-bond formation between the OH group of phenol and one of PG might cause changes in the structures of tyrosine residues in PSIl proteins.
基金This project is supported by "948" Introduction Project (2004-4-60, 2005-4-38)
文摘The light-harvesting chlorophyll a/b-protein complex plays an important role in photosynthesis of plants. A full-length cDNA of light-harvesting chlorophyll a/b (cab) gene was cloned from the first strand of Moso (Phyllostachys edulis) cDNA through RT-PCR and RACE methods, named as cabPhEIO (cab gene 10 from Ph. edulis). The length of cab- PhEIO (GenBank accession number: EU118754) is 1 151 bp, which contains an open reading frame encoding 283 amino acids from 81st to 932nd position. The bioinformatics analysis indicated that the protein encoded by cab-PhElO had a chlorophll a/b binding domain (83rd -247th position), two protein kinase C-phosphorylation sites, three Nmyristoylation sites and a yia A/B double helix domain.The amino acid sequence of cab-PhElO showed high similarity with the cab genes of Oryza sativa, Zea mays, Hordeum vulgare, and Vitis vinifera, more than 80%, respectively, which indicated that cab-PhElO gene belongs to lhcb5 gene family.
基金supported by the Special Fund for Nonprofit Industry (Agriculture) Research Project (201303014)Earmarked Fund for Beijing Fruit Vegetable Innovation Team Project of Modern Agro-industry Technology Research System (GCTDZJ2014033007) in China
文摘Blue and red lights differently regulate leaf photosynthesis. Previous studies indicated that plants under blue light generally exhibit better photosynthetic characteristics than those under red light. However, the regulation mechanism of related photosynthesis characteristics remains largely unclear. Here, four light qualities treatments (300 μmol m-2 s-1) including white fluorescent light (FL), blue monochromatic light (B, 440 nm), red monochromatic light (R, 660 nm), and a combination of red and blue light (RB, R:B=8:1) were carried out to investigate their effects on the activity of photosystem II (PSII) and photosystem I (PSI), and photosynthetic electron transport capacity in the leaves of cucumber (Cucumis sativus L.) seedlings. The results showed that compared to the FL treatment, the R treatment significantly limited electron transport rate in PSII (ETR11) and in PSI (ETR1) by 79.4 and 66.3%, respectively, increased non-light induced non-photochemical quenching in PSII (q^No) and limitation of donor side in PSI (φND) and reduced most JIP-test parameters, suggesting that the R treatment induced suboptimal activity of photosystems and inhibited electron transport from PSII donor side up to PSI. However, these suppressions were effectively alleviated by blue light addition (RB). Compared with the R treatment, the RB treatment significantly increased ETR, and ETR1 by 176.9 and 127.0%, respectively, promoted photosystems activity and enhanced linear electron transport by elevating electron transport from QA to PSI. The B treatment plants exhibited normal photosystems activity and photosynthetic electron transport capacity similar to that of the FL treatment. It was concluded that blue light is more essential than red light for normal photosynthesis by mediating photosystems activity and photosynthetic electron transport capacity.
基金supported by the National Natural Science Foundation of China (U2003214)the Western Youth Scholars Project of the Chinese Academy of Sciences (2021-XBQNXZ-006)。
文摘Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibited by drought.PhotosystemⅡ(PSⅡ)is considered the main attack target when photosynthesis is affected by drought.To clarify how PSⅡcomponents of the ephemeral plant Erodium oxyrhinchum(grown in the Gurbantunggut Desert,China)respond to drought treatment,we evaluated the functional activity of PSII by determining chlorophyll fluorescence and gas exchange parameters under different drought treatment levels(control(400 mL),moderate drought(200 mL),and severe drought(100 m L)).Under moderate drought treatment,significant decreases were found in net photosynthetic rate(Pn),effective quantum yield of PSII(Y(Ⅱ)),relative electron transfer rate of PSII(rETR(Ⅱ)),oxygen-releasing complex,probability of an absorbed exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(Φ(E_(o))),probability of a trapped exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(ψ(E_(o))),and performance index of PSⅡ(PI_(abs)).Compared to control treatment,marked increases were observed in water use efficiency(WUE),relative variable fluorescence at the J step(V_(J)),initial fluorescence(F_(o)),and dissipated energy per active reaction center(DI_(o)/RC)under moderate drought treatment,but there were no substantial changes in semi-saturated light intensity(I_(K)),active reaction centers per cross-section(RC/CS),and total performance index of PSII and PSI(PI_(total),where PSI is the photosystemⅠ).The changes of the above parameters under severe drought treatment were more significant than those under moderate drought treatment.In addition,severe drought treatment significantly increased the absorbed energy per active reaction center(ABS/RC)and trapping energy per active reaction center(TR_(o)/RC)but decreased the energy transmission connectivity of PSⅡcomponents,RC/CS,and PI_(total),compared to moderate drought and control treatments.Principle component analysis(PCA)revealed similar information according to the grouping of parameters.Moderate drought treatment was obviously characterized by RC/CS parameter,and the values of F_(o),V_(J),ABS/RC,DI_(o)/RC,and TR_(o)/RC showed specific reactions to severe drought treatment.These results demonstrated that moderate drought treatment reduced the photochemical activity of PSII to a certain extent but E.oxyrhinchum still showed strong adaptation against drought treatment,while severe drought treatment seriously damaged the structure of PSⅡ.The results of this study are useful for further understanding the adaptations of ephemeral plants to different water conditions and can provide a reference for the selection of relevant parameters for photosynthesis measurements of large samples in the field.
基金Supported by the Shandong Provincial Natural Science Foundation(Nos.ZR2019MC015,ZR2020QC025,ZR2020MD092)the open project of Rongcheng Marine Industrial Technology Research Institute,Ludong University(No.KF20180001)the Key Technology Research and Development Program of Shandong(No.2019GSF107091)。
文摘To investigate the effect of reduced salinity on diatoms’ capacity to cope with changing ultraviolet radiation(U VR) and photosynthetically active radiation(PAR),Skeletonema costatum was grown in a range of salinity(15,25,and 35).The photo system Ⅱ(PSⅡ) function was analyzed by increasing PAR and UVR to mimic a mixing event in turbulent waters.The re sults show that high UVR exposure significantly reduced PSII activity,especially in cells grown at low salinity.UVR,but not salinity,stimulated the ’removal’ rate of PSII protein PsbA.Salinity alone,in the range of 15 to 35,did not regulate PSⅡ acceptor region;however,the low salinity+UVR treatment decreased the energy flux for electron transport per PSⅡ reaction center in S.costatum.It showed that low salinity exacerbated the damaging effect of UVR on PSⅡ function in S.costatum by suppressing Psb A protein synthe sis and modifying the photochemistry of PSⅡ.Although higher catalase(CAT) activity and NPQs were induced,they were unable to prevent the combined damage effect of low salinity+UVR.Our findings indicate that reduced salinity and increased UVR potentially affect the abundance and distribution of S.costatum with the escalation of climate disturbances.
文摘The excitation energy transfer from phycobiliproteins to thylakoid PSII of higher plants was investigated. When incubated with spinach thylakoids, phycobiliproteins isolated from red and blue- green algae transferred light energy absorbed to spinach PSII. The efficiency of energy transfer was dependent on the kind of phycobiliproteins used. If spinach thylakoids were replaced by the thylakoids of Brassica chinensis, R phycoerythin or C- phycocyanin did not transfer their excitation energy to PSII of Brassica chinensis unless allophycocyanin was present.