Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orient...Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub_core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub_core CP47/D1/D2/Cyt b_559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b_559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β_carotene (β_Car) in CP47/D1/D2/Cyt b_559 complex, denoted as β_Car (Ⅰ) and β_Car (Ⅱ), with different orientations, β_Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β_Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β_Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.展开更多
Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibite...Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibited by drought.PhotosystemⅡ(PSⅡ)is considered the main attack target when photosynthesis is affected by drought.To clarify how PSⅡcomponents of the ephemeral plant Erodium oxyrhinchum(grown in the Gurbantunggut Desert,China)respond to drought treatment,we evaluated the functional activity of PSII by determining chlorophyll fluorescence and gas exchange parameters under different drought treatment levels(control(400 mL),moderate drought(200 mL),and severe drought(100 m L)).Under moderate drought treatment,significant decreases were found in net photosynthetic rate(Pn),effective quantum yield of PSII(Y(Ⅱ)),relative electron transfer rate of PSII(rETR(Ⅱ)),oxygen-releasing complex,probability of an absorbed exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(Φ(E_(o))),probability of a trapped exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(ψ(E_(o))),and performance index of PSⅡ(PI_(abs)).Compared to control treatment,marked increases were observed in water use efficiency(WUE),relative variable fluorescence at the J step(V_(J)),initial fluorescence(F_(o)),and dissipated energy per active reaction center(DI_(o)/RC)under moderate drought treatment,but there were no substantial changes in semi-saturated light intensity(I_(K)),active reaction centers per cross-section(RC/CS),and total performance index of PSII and PSI(PI_(total),where PSI is the photosystemⅠ).The changes of the above parameters under severe drought treatment were more significant than those under moderate drought treatment.In addition,severe drought treatment significantly increased the absorbed energy per active reaction center(ABS/RC)and trapping energy per active reaction center(TR_(o)/RC)but decreased the energy transmission connectivity of PSⅡcomponents,RC/CS,and PI_(total),compared to moderate drought and control treatments.Principle component analysis(PCA)revealed similar information according to the grouping of parameters.Moderate drought treatment was obviously characterized by RC/CS parameter,and the values of F_(o),V_(J),ABS/RC,DI_(o)/RC,and TR_(o)/RC showed specific reactions to severe drought treatment.These results demonstrated that moderate drought treatment reduced the photochemical activity of PSII to a certain extent but E.oxyrhinchum still showed strong adaptation against drought treatment,while severe drought treatment seriously damaged the structure of PSⅡ.The results of this study are useful for further understanding the adaptations of ephemeral plants to different water conditions and can provide a reference for the selection of relevant parameters for photosynthesis measurements of large samples in the field.展开更多
The photosystem Ⅱ(PSⅡ) particles were purified by means of nano-anatase TiO_2 treatment of spinach and studied by spectroscopy. The results show that the electron transport and the oxygen-evolving rate of PSⅡ are a...The photosystem Ⅱ(PSⅡ) particles were purified by means of nano-anatase TiO_2 treatment of spinach and studied by spectroscopy. The results show that the electron transport and the oxygen-evolving rate of PSⅡ are accelerated after it has been treated with nano-anatase TiO_2; the UV-Vis absorption spectrum of PSⅡ particles is increased; the red shift of fluorescence emission peak of PSⅡ is 2 nm; the peak intensity is decreased; the PSⅡ signal Ⅱs of low temperature electron paramagnetic resonanace(EPR) spectrum is intensified under light, and the PSⅡ circular dichroism(CD) spectrum is similar to that of control. It is suggested that nano-anatase TiO_2 might bind to the PSⅡ reaction center complex and intensify the function of the PSⅡ electron donor, however, nano-anatase TiO_2 treatment does not change the configuration of the PSⅡ reaction center complex.展开更多
During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The respons...During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The response of leaves of E.acoroides to high light and desiccation was compared for seedlings and mature plants.Results show that the resistance of seedling and mature leaves to high light was quite similar,but to desiccation was very different.Seedling leaves were more sensitive to desiccation than the mature plant leaves,but had better water retention.The damage of desiccation to seedling leaves was mainly caused by dehydration,whereas that to mature plant leaves was caused by hypersaline toxicity.The recovery rate of PSⅡ of seedling leaves was significantly slower than that of the mature plants after the stresses disappeared,which may at least partly contribute to seedling mortality in the wild.In addition,compared to high light,desiccation seriously inhibited the recovery rate of PSⅡ activities even if the leaves became fully rehydrated to their normal relative water content(RWC)in the following re-immersion.Desiccation inhibited the recovery rate of RC/CS_(M)(reaction center per cross section(at t=t_(Fm)))to decrease the production of assimilatory power,which maybe the cause of the slower PSⅡ recovery in desiccation treatments.This study demonstrates that desiccation particularly coupling with high light have a very negative ef fect on the PSⅡ of E.acoroides during low tide and the sensitivity of seedlings and mature plants to desiccation is significantly different,which have important reference significance to choose an appropriate transplanting depth where seedlings and mature plants of E.acoroides not only receive sufficient light for growth,but also that minimize desiccation stress during low tide.展开更多
基金Commissaire Energie de Atomique de Francethe 9th Five-Year Major Program of the National Natural Science Foundation of China(39890390)+1 种基金the State Key Basic Research Development Plan of China(973)(G1998010100)Innovation of Laboratory of Photosynthests Basic Research,Institute of Botany,The Chinese Acadeny of Sciences
文摘Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro . In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub_core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub_core CP47/D1/D2/Cyt b_559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b_559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β_carotene (β_Car) in CP47/D1/D2/Cyt b_559 complex, denoted as β_Car (Ⅰ) and β_Car (Ⅱ), with different orientations, β_Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β_Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β_Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.
基金supported by the National Natural Science Foundation of China (U2003214)the Western Youth Scholars Project of the Chinese Academy of Sciences (2021-XBQNXZ-006)。
文摘Drought is a critical limiting factor affecting the growth and development of plants in arid and semi-arid areas.Photosynthesis,one of the most important physiological processes of plants,can be significantly inhibited by drought.PhotosystemⅡ(PSⅡ)is considered the main attack target when photosynthesis is affected by drought.To clarify how PSⅡcomponents of the ephemeral plant Erodium oxyrhinchum(grown in the Gurbantunggut Desert,China)respond to drought treatment,we evaluated the functional activity of PSII by determining chlorophyll fluorescence and gas exchange parameters under different drought treatment levels(control(400 mL),moderate drought(200 mL),and severe drought(100 m L)).Under moderate drought treatment,significant decreases were found in net photosynthetic rate(Pn),effective quantum yield of PSII(Y(Ⅱ)),relative electron transfer rate of PSII(rETR(Ⅱ)),oxygen-releasing complex,probability of an absorbed exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(Φ(E_(o))),probability of a trapped exciton moving an electron into the electron transport chain beyond primary quinone receptor Q_(A)-(ψ(E_(o))),and performance index of PSⅡ(PI_(abs)).Compared to control treatment,marked increases were observed in water use efficiency(WUE),relative variable fluorescence at the J step(V_(J)),initial fluorescence(F_(o)),and dissipated energy per active reaction center(DI_(o)/RC)under moderate drought treatment,but there were no substantial changes in semi-saturated light intensity(I_(K)),active reaction centers per cross-section(RC/CS),and total performance index of PSII and PSI(PI_(total),where PSI is the photosystemⅠ).The changes of the above parameters under severe drought treatment were more significant than those under moderate drought treatment.In addition,severe drought treatment significantly increased the absorbed energy per active reaction center(ABS/RC)and trapping energy per active reaction center(TR_(o)/RC)but decreased the energy transmission connectivity of PSⅡcomponents,RC/CS,and PI_(total),compared to moderate drought and control treatments.Principle component analysis(PCA)revealed similar information according to the grouping of parameters.Moderate drought treatment was obviously characterized by RC/CS parameter,and the values of F_(o),V_(J),ABS/RC,DI_(o)/RC,and TR_(o)/RC showed specific reactions to severe drought treatment.These results demonstrated that moderate drought treatment reduced the photochemical activity of PSII to a certain extent but E.oxyrhinchum still showed strong adaptation against drought treatment,while severe drought treatment seriously damaged the structure of PSⅡ.The results of this study are useful for further understanding the adaptations of ephemeral plants to different water conditions and can provide a reference for the selection of relevant parameters for photosynthesis measurements of large samples in the field.
文摘The photosystem Ⅱ(PSⅡ) particles were purified by means of nano-anatase TiO_2 treatment of spinach and studied by spectroscopy. The results show that the electron transport and the oxygen-evolving rate of PSⅡ are accelerated after it has been treated with nano-anatase TiO_2; the UV-Vis absorption spectrum of PSⅡ particles is increased; the red shift of fluorescence emission peak of PSⅡ is 2 nm; the peak intensity is decreased; the PSⅡ signal Ⅱs of low temperature electron paramagnetic resonanace(EPR) spectrum is intensified under light, and the PSⅡ circular dichroism(CD) spectrum is similar to that of control. It is suggested that nano-anatase TiO_2 might bind to the PSⅡ reaction center complex and intensify the function of the PSⅡ electron donor, however, nano-anatase TiO_2 treatment does not change the configuration of the PSⅡ reaction center complex.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB42000000)the National Natural Science Foundation of China(No.32071577)+2 种基金the International Partnership Program of Chinese Academy of Sciences(No.GJHZ2039)the Shandong Provincial Natural Science Foundation(No.ZR201911130493)the Taishan Industrial Experts Program(No.Tscy20200102)。
文摘During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The response of leaves of E.acoroides to high light and desiccation was compared for seedlings and mature plants.Results show that the resistance of seedling and mature leaves to high light was quite similar,but to desiccation was very different.Seedling leaves were more sensitive to desiccation than the mature plant leaves,but had better water retention.The damage of desiccation to seedling leaves was mainly caused by dehydration,whereas that to mature plant leaves was caused by hypersaline toxicity.The recovery rate of PSⅡ of seedling leaves was significantly slower than that of the mature plants after the stresses disappeared,which may at least partly contribute to seedling mortality in the wild.In addition,compared to high light,desiccation seriously inhibited the recovery rate of PSⅡ activities even if the leaves became fully rehydrated to their normal relative water content(RWC)in the following re-immersion.Desiccation inhibited the recovery rate of RC/CS_(M)(reaction center per cross section(at t=t_(Fm)))to decrease the production of assimilatory power,which maybe the cause of the slower PSⅡ recovery in desiccation treatments.This study demonstrates that desiccation particularly coupling with high light have a very negative ef fect on the PSⅡ of E.acoroides during low tide and the sensitivity of seedlings and mature plants to desiccation is significantly different,which have important reference significance to choose an appropriate transplanting depth where seedlings and mature plants of E.acoroides not only receive sufficient light for growth,but also that minimize desiccation stress during low tide.