In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcatio...In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.展开更多
In this paper,we study the existence of almost periodic solutions of neutral differential difference equations with piecewise constant arguments via difference equation methods.
In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic ...In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic solutions of relevant difference equations.展开更多
In this paper, a differential equation with piecewise constant arguments modeling an early brain tumor growth is considered. The discretization process in the interval t ∈ [n, n+1) leads to two-dimensional discrete...In this paper, a differential equation with piecewise constant arguments modeling an early brain tumor growth is considered. The discretization process in the interval t ∈ [n, n+1) leads to two-dimensional discrete dynamical system. By using the Schur-Cohn criterion, stability conditions of the positive equilibrium point of the system are obtained. Choosing appropriate bifurcation parameter, the existence of Neimark-Sacker and flip bifurcations is verified. In addition, the direction and stability of the Neimark-Sacker and flip bifurcations are determined by using the normal form and center manifold theory. Finally, the Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors of the system.展开更多
The authors employ the method of upper and lower solutions coupled with the monotone iterative technique to obtain some results of existence and un-iqueness for nonlinear boundary value problem of differential equatio...The authors employ the method of upper and lower solutions coupled with the monotone iterative technique to obtain some results of existence and un-iqueness for nonlinear boundary value problem of differential equations with piecewise constant arguments.展开更多
In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibr...In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibrium.展开更多
In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of...In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.展开更多
In this article, a delay differential equation with piecewise constant argument is considered; the existence and global attractivity condition of almost periodic solution and quasi-periodic solution are obtained.
In this paper, we give sufficient conditions for the existence and uniqueness of asymptotically w-antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space when w ...In this paper, we give sufficient conditions for the existence and uniqueness of asymptotically w-antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space when w is an integer. This is done using the Banach fixed point theorem. An example involving the heat operator is discussed as an illustration of the theory.展开更多
For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al...For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.展开更多
In this paper we consider the differential equation with piecewisely constant arguments where ['] -denotes the greates integer function, r(t) E C([0,+∞),(0, +∞)),Pi ∈ [0, +∞)(i = 1, 2,''' , m), wit...In this paper we consider the differential equation with piecewisely constant arguments where ['] -denotes the greates integer function, r(t) E C([0,+∞),(0, +∞)),Pi ∈ [0, +∞)(i = 1, 2,''' , m), with Pm > 0, we establish some new sufficient conditions for an arbitrary solution N(t) to satisfy the initial conditions of the form N(0) = NO > 0 and N(-j) = N-j ≥ 0,j = 1, 2, ., m, to converge to the positive equilibrium N* as t →∞.展开更多
Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asympt...Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asymptotically) stable.1991 Mathematics Subject Classification: 39A12.展开更多
The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.
In this paper, we investigate the existence and uniqueness of new almost periodic type solutions, so-called pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument b...In this paper, we investigate the existence and uniqueness of new almost periodic type solutions, so-called pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument by means of introducing the notion of pseudo almost periodic vector sequences.展开更多
Under suitable assumptions, the existence and the uniqueness of the pseudo-almost periodic solution for a singularly perturbed differential equation with piecewise constant argument are obtained. In addition, the stab...Under suitable assumptions, the existence and the uniqueness of the pseudo-almost periodic solution for a singularly perturbed differential equation with piecewise constant argument are obtained. In addition, the stability properties of these solutions are characterized by the construction of manifolds of initial data.展开更多
In this paper, we present some existence theorems for pseudo-almost periodic solutions of differential equations with piecewise constant argument by means of pseudo-almost periodic solutions of relevant difference equ...In this paper, we present some existence theorems for pseudo-almost periodic solutions of differential equations with piecewise constant argument by means of pseudo-almost periodic solutions of relevant difference equations.展开更多
In this paper, the spectrum relation of almost periodic solution for the equation (x(t) +px(t - 1))" = qx([t]) + f(Q is investigated. Although this has been discussed in an article, some counterexamples ar...In this paper, the spectrum relation of almost periodic solution for the equation (x(t) +px(t - 1))" = qx([t]) + f(Q is investigated. Although this has been discussed in an article, some counterexamples are constructed to show that some part of the spectrum inclusion in that article is not correct. The key point which causes such problem is found out. A new statement is formulated and proved.展开更多
In this paper,we introduce a new class of ergodic sequences,pseudo almost periodic sequences,and study the existence of pseudo almost periodic sequences to difference equations.On the basis of these,we investigate the...In this paper,we introduce a new class of ergodic sequences,pseudo almost periodic sequences,and study the existence of pseudo almost periodic sequences to difference equations.On the basis of these,we investigate the existence of pseudo almost periodic solutions for neutral delay differential equations with piecewise constant argument, d/(dt)(y(t)+py(t-1))=qy(2[(t+1)/2])+g(t,y(t),([t])).展开更多
We present some conditions for the existence and uniqueness of almost periodic solutions to third order neutral delay-differential equations with piecewise constant.
The necessary and sufficient conditions for the oscillations of every solution of the nonlinear delay equation (t)+f(x(t-l))+g(x( t-k ))=0 are oblained.
基金supported by Beijing Higher Education Young Elite Teacher(YETP0458)
文摘In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.
基金Supported by the Science Foundation of Fushun Petroleum Institute
文摘In this paper,we study the existence of almost periodic solutions of neutral differential difference equations with piecewise constant arguments via difference equation methods.
基金Supported by National Natural Science Foundation of China(Grant Nos.11271380,11031002 and 11371058)Research Fund for the Doctoral Program of Higher Education(Grant No.20110003110004)+1 种基金the Grant of BeijingEducation Committee Key Project(Grant No.KZ201310028031)Natural Science Foundation of GuangdongProvince of China(Grant No.S2013010013212)
文摘In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic solutions of relevant difference equations.
文摘In this paper, a differential equation with piecewise constant arguments modeling an early brain tumor growth is considered. The discretization process in the interval t ∈ [n, n+1) leads to two-dimensional discrete dynamical system. By using the Schur-Cohn criterion, stability conditions of the positive equilibrium point of the system are obtained. Choosing appropriate bifurcation parameter, the existence of Neimark-Sacker and flip bifurcations is verified. In addition, the direction and stability of the Neimark-Sacker and flip bifurcations are determined by using the normal form and center manifold theory. Finally, the Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors of the system.
基金Supported partially by the Youthful Sciences Foundation of Shanxi(20021003).
文摘The authors employ the method of upper and lower solutions coupled with the monotone iterative technique to obtain some results of existence and un-iqueness for nonlinear boundary value problem of differential equations with piecewise constant arguments.
基金This work was partially supported by the National Natural Science Foundation of China (10071045)Foundation of Zhejiang for Middle-young-aged Leader of Branch of Learning.
文摘In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibrium.
文摘In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.
文摘In this article, a delay differential equation with piecewise constant argument is considered; the existence and global attractivity condition of almost periodic solution and quasi-periodic solution are obtained.
文摘In this paper, we give sufficient conditions for the existence and uniqueness of asymptotically w-antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space when w is an integer. This is done using the Banach fixed point theorem. An example involving the heat operator is discussed as an illustration of the theory.
文摘For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.
基金Supported by the Science Foundation of Hunan Educational Commites (99C12)
文摘In this paper we consider the differential equation with piecewisely constant arguments where ['] -denotes the greates integer function, r(t) E C([0,+∞),(0, +∞)),Pi ∈ [0, +∞)(i = 1, 2,''' , m), with Pm > 0, we establish some new sufficient conditions for an arbitrary solution N(t) to satisfy the initial conditions of the form N(0) = NO > 0 and N(-j) = N-j ≥ 0,j = 1, 2, ., m, to converge to the positive equilibrium N* as t →∞.
文摘Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asymptotically) stable.1991 Mathematics Subject Classification: 39A12.
文摘The authors discuss the existence of pseudo almost periodic solutions of differential equations with piecewise constant argument by means of introducing new concept, pseudo almost periodic sequence.
基金the Science Foundation of Fushun Petroleum Institute and the Science Foundation of Liaoning Province.
文摘In this paper, we investigate the existence and uniqueness of new almost periodic type solutions, so-called pseudo almost periodic solutions for the systems of differential equations with piecewise constant argument by means of introducing the notion of pseudo almost periodic vector sequences.
基金the National Natural Science Foundation of China(10371010)SRFDP(20030027011)
文摘Under suitable assumptions, the existence and the uniqueness of the pseudo-almost periodic solution for a singularly perturbed differential equation with piecewise constant argument are obtained. In addition, the stability properties of these solutions are characterized by the construction of manifolds of initial data.
基金Supported by National Natural Science Foundation of China(Grant Nos.11271380and11031002)Research Fund for the Doctoral Program of Higher Education(Grant No.20110003110004)Natural Science Foundation of Guangdong Province of China(Grant No.10151601501000003)
文摘In this paper, we present some existence theorems for pseudo-almost periodic solutions of differential equations with piecewise constant argument by means of pseudo-almost periodic solutions of relevant difference equations.
基金The first author is supported by NPU Foundation for Fundamental Research (NPU-FFR-JC20100220) the second author is supported by National Natural Science Foundation (Grant No. 11031002) and RFDP the third author is supported by National Natural Science Foundation (Grant No. 11071048 )
文摘In this paper, the spectrum relation of almost periodic solution for the equation (x(t) +px(t - 1))" = qx([t]) + f(Q is investigated. Although this has been discussed in an article, some counterexamples are constructed to show that some part of the spectrum inclusion in that article is not correct. The key point which causes such problem is found out. A new statement is formulated and proved.
文摘In this paper,we introduce a new class of ergodic sequences,pseudo almost periodic sequences,and study the existence of pseudo almost periodic sequences to difference equations.On the basis of these,we investigate the existence of pseudo almost periodic solutions for neutral delay differential equations with piecewise constant argument, d/(dt)(y(t)+py(t-1))=qy(2[(t+1)/2])+g(t,y(t),([t])).
基金supported by NNSF of China (No.11271380)NSF of Guangdong Province (1015160150100003)Foundation for Distinguished Young Talents in Higher Education of Guangdong of China (No.LYM08014)
文摘We present some conditions for the existence and uniqueness of almost periodic solutions to third order neutral delay-differential equations with piecewise constant.
文摘The necessary and sufficient conditions for the oscillations of every solution of the nonlinear delay equation (t)+f(x(t-l))+g(x( t-k ))=0 are oblained.