目的对Piezo1蛋白在巨噬细胞参与铁代谢平衡调控中作用作一综述,总结近年来关于年龄相关骨量丢失及巨噬细胞Piezo1的最新研究进展,为治疗年龄相关骨量丢失提供新思路。方法计算机检索CNKI、PubMed等数据库自建库至2023年1月与巨噬细胞Pi...目的对Piezo1蛋白在巨噬细胞参与铁代谢平衡调控中作用作一综述,总结近年来关于年龄相关骨量丢失及巨噬细胞Piezo1的最新研究进展,为治疗年龄相关骨量丢失提供新思路。方法计算机检索CNKI、PubMed等数据库自建库至2023年1月与巨噬细胞Piezo1在年龄相关骨量丢失的相关文献,中文检索关键词为“巨噬细胞、机械敏感性离子通道蛋白、年龄相关骨量丢失、骨质疏松症”,英文检索关键词为“Macrophages、Piezo1、age⁃related bone loss、ARBL、Osteoporosis”,最终将42篇文献纳入。结果与结论巨噬细胞参与铁代谢平衡的调控,骨髓巨噬细胞中Piezo1高表达能导致机体出现铁超载,进而导致ARBL的发生。Piezo1为治疗年龄相关骨量丢失提供了分子层面的新思路和新视角。展开更多
目的探讨压电型机械敏感离子通道元件2(piezoelectric type mechanosensitive ion channel component 2,PIEZO2)对胰腺癌细胞发生发展的影响。方法采用免疫组织化学技术检测胰腺癌与癌旁组织的PIEZO2阳性率;将PIEZO2干扰片段转染到胰腺...目的探讨压电型机械敏感离子通道元件2(piezoelectric type mechanosensitive ion channel component 2,PIEZO2)对胰腺癌细胞发生发展的影响。方法采用免疫组织化学技术检测胰腺癌与癌旁组织的PIEZO2阳性率;将PIEZO2干扰片段转染到胰腺癌细胞Panc-1中,通过实时荧光定量PCR(qPCR)和蛋白免疫印迹(WB)检测PIEZO2的转录水平及蛋白水平。以细胞计数试剂盒-8(Cell Counting Kit-8,CCK8)检测细胞增殖情况,transwell法检测细胞的迁移侵袭能力。通过Illumina HiSeq^(TM)X Ten进行cDNA文库构建并测序,分析干扰PIEZO2后Panc-1细胞内差异基因并通过GO富集分析参与基因富集的相关通路。结果胰腺癌组织中PIEZO2表达水平高于癌旁组织,且高PIEZO2表达的胰腺癌患者总生存率较低。敲减PIEZO2基因后,qPCR和WB结果显示PIEZO2的表达量较对照组减低,差异具有统计学意义。敲减组的增殖、迁移、侵袭能力均低于对照组,且差异具有统计学意义。对两组进行转录组分析发现,两组分别获得15521,15325个基因,与敲减组相比,对照组有3411个差异表达基因(differentially expressed genes,DEGs)上调,2830个DEGs下调,GO富集分析发现DEGs基因主要富集于细胞内解剖结构、细胞连接和细胞外基质。结论敲除PIEZO2可抑制细胞的增殖、迁移和侵袭,PIEZO2通过调控细胞解剖结构、细胞连接和细胞外基质参与胰腺癌的发生发展,靶向PIEZO2将是胰腺癌新的治疗策略。展开更多
Intracranial hemorrhage(ICH)causes numerous neurological deficits and deaths worldwide each year,leaving a significant health burden on the public.The pathophysiology of ICH is complicated and involves both primary an...Intracranial hemorrhage(ICH)causes numerous neurological deficits and deaths worldwide each year,leaving a significant health burden on the public.The pathophysiology of ICH is complicated and involves both primary and secondary injuries.Hematoma,as the primary pathology of ICH,undergoes metabolism and triggers biochemical and biomechanical alterations in the brain,leading to the secondary injury.Past endeavors mainly aimed at biochemical-initiated mechanisms for causing secondary injury,which have made limited progress in recent years,although ICH itself is also highly biomechanics-related.The discovery of the mechanically-activated cation channel Piezo1 provides a new avenue to further explore the mechanisms underlying the secondary injury.The current article reviews the structure and gating mechanisms of Piezo1,its roles in the physiology/pathophysiology of neurons,astrocytes,microglia,and bone-marrow-derived macrophages,and especially its roles in erythrocytic turnover and iron metabolism,revealing a potential interplay between the biomechanics and biochemistry of hematoma in ICH.Collectively,these advances provide deeper insights into the secondary injury of ICH and lay the foundations for future research.展开更多
文摘目的对Piezo1蛋白在巨噬细胞参与铁代谢平衡调控中作用作一综述,总结近年来关于年龄相关骨量丢失及巨噬细胞Piezo1的最新研究进展,为治疗年龄相关骨量丢失提供新思路。方法计算机检索CNKI、PubMed等数据库自建库至2023年1月与巨噬细胞Piezo1在年龄相关骨量丢失的相关文献,中文检索关键词为“巨噬细胞、机械敏感性离子通道蛋白、年龄相关骨量丢失、骨质疏松症”,英文检索关键词为“Macrophages、Piezo1、age⁃related bone loss、ARBL、Osteoporosis”,最终将42篇文献纳入。结果与结论巨噬细胞参与铁代谢平衡的调控,骨髓巨噬细胞中Piezo1高表达能导致机体出现铁超载,进而导致ARBL的发生。Piezo1为治疗年龄相关骨量丢失提供了分子层面的新思路和新视角。
基金supported by the National Natural Science Foundation of China(Grant No.82271426).
文摘Intracranial hemorrhage(ICH)causes numerous neurological deficits and deaths worldwide each year,leaving a significant health burden on the public.The pathophysiology of ICH is complicated and involves both primary and secondary injuries.Hematoma,as the primary pathology of ICH,undergoes metabolism and triggers biochemical and biomechanical alterations in the brain,leading to the secondary injury.Past endeavors mainly aimed at biochemical-initiated mechanisms for causing secondary injury,which have made limited progress in recent years,although ICH itself is also highly biomechanics-related.The discovery of the mechanically-activated cation channel Piezo1 provides a new avenue to further explore the mechanisms underlying the secondary injury.The current article reviews the structure and gating mechanisms of Piezo1,its roles in the physiology/pathophysiology of neurons,astrocytes,microglia,and bone-marrow-derived macrophages,and especially its roles in erythrocytic turnover and iron metabolism,revealing a potential interplay between the biomechanics and biochemistry of hematoma in ICH.Collectively,these advances provide deeper insights into the secondary injury of ICH and lay the foundations for future research.