The development of pressure and bioleaching processes for high grade copper ores and concentrates will result in copper solvent extraction plants treating solutions with high copper and acid concentrations at temperat...The development of pressure and bioleaching processes for high grade copper ores and concentrates will result in copper solvent extraction plants treating solutions with high copper and acid concentrations at temperatures up to 45℃ and these copper solvent extraction plants will run with reagent concentrations up to 40 vol.%. There is also a trend to use copper stripping solutions with less acid than typically used in recent years. Cognis has developed a model that accurately predicts the copper strip point for virtually any copper solvent extraction reagent or combination of reagents under a wide variety of conditions. The equilibrium strip points for several well known commercial copper solvent extraction reagents are given as a function of reagent concentration, the copper and acid concentration of the strip aqueous, and the temperature. It is shown that the equilibrium strip point is not a straight line function of reagent concentration and that the equilibrium strip point increases with an increase in temperature. Copper extraction also increases as the temperature increases.展开更多
文摘The development of pressure and bioleaching processes for high grade copper ores and concentrates will result in copper solvent extraction plants treating solutions with high copper and acid concentrations at temperatures up to 45℃ and these copper solvent extraction plants will run with reagent concentrations up to 40 vol.%. There is also a trend to use copper stripping solutions with less acid than typically used in recent years. Cognis has developed a model that accurately predicts the copper strip point for virtually any copper solvent extraction reagent or combination of reagents under a wide variety of conditions. The equilibrium strip points for several well known commercial copper solvent extraction reagents are given as a function of reagent concentration, the copper and acid concentration of the strip aqueous, and the temperature. It is shown that the equilibrium strip point is not a straight line function of reagent concentration and that the equilibrium strip point increases with an increase in temperature. Copper extraction also increases as the temperature increases.