The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination...Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
A novel hyperbranched poly(phenylene oxide) (HPPO) with phenolic terminal groups was prepared from 4-bromo-4',4"-dihydroxytriphenylmethane as AB2 monomer in dimethylsulfoxide (DMSO) via a modified Ullmann reac...A novel hyperbranched poly(phenylene oxide) (HPPO) with phenolic terminal groups was prepared from 4-bromo-4',4"-dihydroxytriphenylmethane as AB2 monomer in dimethylsulfoxide (DMSO) via a modified Ullmann reaction. The molecular weight and polydispersity (PD) of the resulting polymers increased with increasing reaction time. In the presence of core molecules (bisphenol A and 1,3,5-trihydroxybenzene), which have the similar molecular backbones to the reactive monomer, the molecular weight could be controlled by varying the core-to-monomer ratio. Incorporation of a very small amount of core molecules could lead to a higher molecular weight as compared with that without the addition of core molecules. However, when the core content reached certain extent, the molecular weight would decrease with the further increase in the core content. A new similar behavior of control over the PD was also obtained. The resulting polymers were characterized by ^1H-NMR, ^13C-NMR, FT-IR, and GPC.展开更多
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi...Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.展开更多
A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair...A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio.It favors to reduce the vanadium permeation.While,the increased sulfonic acid concentration ensured that proton conductivity was still at a high level.As a result,a better balance between the vanadium ion permeation(6.1×10^-9 cm^2·s^-1)and proton conductivity(50.8 m S·cm^-1)in the S-L-PPO/PBI-10%membrane was achieved.The VRFB performance with S-L-PPO/PBI-10%membrane exhibited an EE of 82.7%,which was higher than those of pristine S-L-PPO(81.8%)and Nafion 212(78.0%)at 120 m A·cm^-2.In addition,the S-LPPO/PBI-10%membrane had a much longer self-discharge duration time(142 h)than that of Nafion 212(23 h).展开更多
The apparent solubility (S), concentration-average diffusivity (D), and permeability (P), for C0_2, CH_4 and N_2 through PPO and aryl-brominated PPO at 35℃ for pressure ranging from 1 to 26 atm are reported. It is fo...The apparent solubility (S), concentration-average diffusivity (D), and permeability (P), for C0_2, CH_4 and N_2 through PPO and aryl-brominated PPO at 35℃ for pressure ranging from 1 to 26 atm are reported. It is found that P, D, and S of the membranes to all the three gases vary with the extent of bromination. S increases with the increase of the percent of bromine in each case, but D to CO_2 increases remarkably only at higher degree of brominafion, and therefore, P to CO_2 is increased by more than 100% over a wide range ofpressure in the case. The solubility data are well described by the dual mode sorption model. It is found that the gas molecules sorbed by the Langmuir mode are relatively more immobilized and the contribution of the nonequilibrinm character of the polymer to gas permeation increases obviously for CO_2 and is hardly changed for CH_4 with increasing bromine content. These observations are interpreted in terms of changes in specific free volume (SFV)and the cohesive energy density (CED) of the polymers.展开更多
This paper investigates the possibility of attaining sulphonated poly(phenylene oxide) (SPPO) with a relativelyhigher sulfonation degree. To achieve this aim, the approach we adopt is to improve the solubility of the ...This paper investigates the possibility of attaining sulphonated poly(phenylene oxide) (SPPO) with a relativelyhigher sulfonation degree. To achieve this aim, the approach we adopt is to improve the solubility of the final product in themixed solvent so that the sulfonation may take place between the bulk solutions and PPO powders even at higher sulfonationdegree. It is shown that the addition of a proper amount of dimethyl formide (DMF) to the conventional PPO-chloroformsystem can actually enhance the sulfonation effect. The solvent composition is then correlated with the sulfonation degreebased on the solubility parameters. It is interesting to find that solubility parameters between the mixed solvent and theprecipitated products keep an approximately unchanged value at about 4.9, which is just equal to that when pure chloroformis used, though the solubility parameters of both solvents increase with the content of DMF in solution. This may be the mainreason why the addition of DMF can reduce the precipitation and improve the ion exchange capacity (IEC) of SPPOpolymer.展开更多
In this paper the percolation theory is employed to study the insulator-to-conductortransition in sulphonated poly(phenylene oxide)(SPPO) polymer membranes.The membranes withdifferent sulphonation degree were prep...In this paper the percolation theory is employed to study the insulator-to-conductortransition in sulphonated poly(phenylene oxide)(SPPO) polymer membranes.The membranes withdifferent sulphonation degree were prepared and infrared characterized.The transition thresholdwas calculated by the experimental data of membrane conductivities and the coordination numberwas thus estimated.The functional group-SO<sub>3</sub>H distribution in the membrane was evaluated inaccordance with the calculations and showed a non-random dispersion on the microscopic scale.展开更多
The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective...The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.展开更多
Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the...Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the a...Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.展开更多
It was found that traces of water in the reaction medium would result in a great increase of gel and a decrease of Molecular weight of the poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene) during the pol...It was found that traces of water in the reaction medium would result in a great increase of gel and a decrease of Molecular weight of the poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene) during the polymerization, which ultimately led to inferior film qualities and device properties. The device (ITO/PEDOT/MEH-PPV/Ba/Al) with MEH-PPV prepared under dry conditions has an external quantum efficiency of above 2.0%.展开更多
A novel copolymer of polyaniline-poly(propylene oxide) (PAN-PPO) was prepared by cyclic voltammetry (CV) and characterized by FTIR and SEM. It showed good electroactivity for methanol oxidation in H2SO4 solution.
Poly(phenylene sulfide/ether) (PPSE) was synthesized from 4,4'-dihydroxydiphenyl sulfide and 4,4'-dichlorodiphenyl sulfide in solution by nucleophilic substitution reaction. The resulting polymer was characteriz...Poly(phenylene sulfide/ether) (PPSE) was synthesized from 4,4'-dihydroxydiphenyl sulfide and 4,4'-dichlorodiphenyl sulfide in solution by nucleophilic substitution reaction. The resulting polymer was characterized by viscosity measurement, elemental analysis, FT-IR, ^1H NMR, X-ray diffraction and thermal analysis. The results showed that the viscosities of the resulting polymer were above 0.68 dL/g, and the linear chain structure of product was confirmed. PPSE had the same reflex indices as poly(p-phenylene sulfide), an orthorhombic crystalline with unit cell a=0.853, b=0.562, c=1.026nm. The melting temperature, glass transition temperature and initial decomposition temperature were found to be 228℃, 85℃ and 325℃, respectively. The product was soluble in common organic solvents such as NMP, N, N'-dimethylformamide, N, N'-dimethylacetamide and 1,2-dichloroethane.展开更多
Graphite oxide, a pseudo-two-dimensional solid in bulk form, was synthesized from natural graphite powder by oxidization with KMnO4 in concentrated H2SO4. The poly(vinyl acetate)-intercalated graphite oxide nano-compo...Graphite oxide, a pseudo-two-dimensional solid in bulk form, was synthesized from natural graphite powder by oxidization with KMnO4 in concentrated H2SO4. The poly(vinyl acetate)-intercalated graphite oxide nano-composite was prepared by an in situ intercalative polymerization reaction, in which n-octanol-graphite oxide intercalation compounds were first obtained, vinyl acetate monomer was then dispersed into the interlayer of modified graphite oxide, followed by thermal polymerization of the monomer. It was experimentally shown that the c-axis space of poly(vinyl acetate)-intercalated graphite oxide was increased to 0.115 nm, which suggested there existed a monolayer of poly(vinyl acetate) chain between the layers of graphite oxide. The nanocomposite was also characterized with thermal analysis and FT-IR spectrometry.展开更多
Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (e...Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.展开更多
In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on ...In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.展开更多
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
基金the financial support of the National Key R&D Program of China(No.2019YFC1806000)the Huazhong University of Science and Technology(No.3004013118)+2 种基金support from the National Natural Science Foundation of China(No.51903099)Huazhong University of Science and Technology(No.3004013134)the 100 Talents Program of the Hubei Provincial Government.Z.D.thanks the Postdoctoral Science Foundation of China(No.0106013063).
文摘Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50473042)the Beijing Natural Science Foundation (No. 2042017).
文摘A novel hyperbranched poly(phenylene oxide) (HPPO) with phenolic terminal groups was prepared from 4-bromo-4',4"-dihydroxytriphenylmethane as AB2 monomer in dimethylsulfoxide (DMSO) via a modified Ullmann reaction. The molecular weight and polydispersity (PD) of the resulting polymers increased with increasing reaction time. In the presence of core molecules (bisphenol A and 1,3,5-trihydroxybenzene), which have the similar molecular backbones to the reactive monomer, the molecular weight could be controlled by varying the core-to-monomer ratio. Incorporation of a very small amount of core molecules could lead to a higher molecular weight as compared with that without the addition of core molecules. However, when the core content reached certain extent, the molecular weight would decrease with the further increase in the core content. A new similar behavior of control over the PD was also obtained. The resulting polymers were characterized by ^1H-NMR, ^13C-NMR, FT-IR, and GPC.
基金supported by National Natural Science Foundation of China(Grant No.U1930113),ChinaNational Natural Science Foundation of China(52072036)
文摘Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.
基金supported by the National Natural Science Foundation of China(U1808209)Fundamental Research Funds for the Central Universities(DUT18JC40)Liaoning Province Science and Technology Department(201601037)。
文摘A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio.It favors to reduce the vanadium permeation.While,the increased sulfonic acid concentration ensured that proton conductivity was still at a high level.As a result,a better balance between the vanadium ion permeation(6.1×10^-9 cm^2·s^-1)and proton conductivity(50.8 m S·cm^-1)in the S-L-PPO/PBI-10%membrane was achieved.The VRFB performance with S-L-PPO/PBI-10%membrane exhibited an EE of 82.7%,which was higher than those of pristine S-L-PPO(81.8%)and Nafion 212(78.0%)at 120 m A·cm^-2.In addition,the S-LPPO/PBI-10%membrane had a much longer self-discharge duration time(142 h)than that of Nafion 212(23 h).
文摘The apparent solubility (S), concentration-average diffusivity (D), and permeability (P), for C0_2, CH_4 and N_2 through PPO and aryl-brominated PPO at 35℃ for pressure ranging from 1 to 26 atm are reported. It is found that P, D, and S of the membranes to all the three gases vary with the extent of bromination. S increases with the increase of the percent of bromine in each case, but D to CO_2 increases remarkably only at higher degree of brominafion, and therefore, P to CO_2 is increased by more than 100% over a wide range ofpressure in the case. The solubility data are well described by the dual mode sorption model. It is found that the gas molecules sorbed by the Langmuir mode are relatively more immobilized and the contribution of the nonequilibrinm character of the polymer to gas permeation increases obviously for CO_2 and is hardly changed for CH_4 with increasing bromine content. These observations are interpreted in terms of changes in specific free volume (SFV)and the cohesive energy density (CED) of the polymers.
基金The authors graefully acknowledge financial support from the National Natural Science Foundation of China (29976040), Natural Science Foundation of Anhui Province (99045431), Key Foundation of Anhui Educational Comrnittee (2000j1255zd), the Foundation of
文摘This paper investigates the possibility of attaining sulphonated poly(phenylene oxide) (SPPO) with a relativelyhigher sulfonation degree. To achieve this aim, the approach we adopt is to improve the solubility of the final product in themixed solvent so that the sulfonation may take place between the bulk solutions and PPO powders even at higher sulfonationdegree. It is shown that the addition of a proper amount of dimethyl formide (DMF) to the conventional PPO-chloroformsystem can actually enhance the sulfonation effect. The solvent composition is then correlated with the sulfonation degreebased on the solubility parameters. It is interesting to find that solubility parameters between the mixed solvent and theprecipitated products keep an approximately unchanged value at about 4.9, which is just equal to that when pure chloroformis used, though the solubility parameters of both solvents increase with the content of DMF in solution. This may be the mainreason why the addition of DMF can reduce the precipitation and improve the ion exchange capacity (IEC) of SPPOpolymer.
基金Supported by the Chinese Postdoctoral Foundation.
文摘In this paper the percolation theory is employed to study the insulator-to-conductortransition in sulphonated poly(phenylene oxide)(SPPO) polymer membranes.The membranes withdifferent sulphonation degree were prepared and infrared characterized.The transition thresholdwas calculated by the experimental data of membrane conductivities and the coordination numberwas thus estimated.The functional group-SO<sub>3</sub>H distribution in the membrane was evaluated inaccordance with the calculations and showed a non-random dispersion on the microscopic scale.
基金supported by National Natural Science Foundation of China(Grant No.22209012).
文摘The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.
文摘Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.
基金Project(50925417) supported by China National Funds for Distinguished Young ScientistsProject(50830301) supported by the National Natural Science Foundation of China+1 种基金Project(2009ZX07212-001-01) supported by Major Science and Technology Program for Water Pollution Control and Treatment of ChinaProject(2011) supported by Hunan Nonferrous Fundamental Research Fund
文摘Sulfate adsorption by poly(m-phenylenediamine)s(PmPDs) with various oxidation states synthesized through chemically oxidative polymerization was investigated.Series of sorption experiments were conducted,and the adsorption mechanism and the relationship between oxidation state and adsorption performance were studied with the characterization of Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),pH tracking and energy calculation.The results show that the adsorption performance in acidic solution is improved with the decrease of oxidation state of poly(m-phenylenediamine)(PmPD).The rate constant is as high as 425.5 mg/(g·min) in the short equilibrium time of 30 min.The estimated highest adsorptivity of sulfate ions is 95.1%.According to the Langmuir equation,the adsorbance is 108.5 mg/g.The sulfate desorption efficiency is about 95% and the accumulative adsorbance is up to 487.95 mg/g in 5 cycles.
基金This work were supported by the National Natural Science Foundation of China (Project No29992530-6) and the Natural Science Foundation of Guangdong Province (Grant No. 990623).
文摘It was found that traces of water in the reaction medium would result in a great increase of gel and a decrease of Molecular weight of the poly(2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene) during the polymerization, which ultimately led to inferior film qualities and device properties. The device (ITO/PEDOT/MEH-PPV/Ba/Al) with MEH-PPV prepared under dry conditions has an external quantum efficiency of above 2.0%.
文摘A novel copolymer of polyaniline-poly(propylene oxide) (PAN-PPO) was prepared by cyclic voltammetry (CV) and characterized by FTIR and SEM. It showed good electroactivity for methanol oxidation in H2SO4 solution.
文摘Poly(phenylene sulfide/ether) (PPSE) was synthesized from 4,4'-dihydroxydiphenyl sulfide and 4,4'-dichlorodiphenyl sulfide in solution by nucleophilic substitution reaction. The resulting polymer was characterized by viscosity measurement, elemental analysis, FT-IR, ^1H NMR, X-ray diffraction and thermal analysis. The results showed that the viscosities of the resulting polymer were above 0.68 dL/g, and the linear chain structure of product was confirmed. PPSE had the same reflex indices as poly(p-phenylene sulfide), an orthorhombic crystalline with unit cell a=0.853, b=0.562, c=1.026nm. The melting temperature, glass transition temperature and initial decomposition temperature were found to be 228℃, 85℃ and 325℃, respectively. The product was soluble in common organic solvents such as NMP, N, N'-dimethylformamide, N, N'-dimethylacetamide and 1,2-dichloroethane.
基金Financial support from Key Project of The National Natural Science Foundation of China (No. 59836230) is gratefully acknowledged.
文摘Graphite oxide, a pseudo-two-dimensional solid in bulk form, was synthesized from natural graphite powder by oxidization with KMnO4 in concentrated H2SO4. The poly(vinyl acetate)-intercalated graphite oxide nano-composite was prepared by an in situ intercalative polymerization reaction, in which n-octanol-graphite oxide intercalation compounds were first obtained, vinyl acetate monomer was then dispersed into the interlayer of modified graphite oxide, followed by thermal polymerization of the monomer. It was experimentally shown that the c-axis space of poly(vinyl acetate)-intercalated graphite oxide was increased to 0.115 nm, which suggested there existed a monolayer of poly(vinyl acetate) chain between the layers of graphite oxide. The nanocomposite was also characterized with thermal analysis and FT-IR spectrometry.
基金Supported by the National Natural Science Foundation of China and the State Education Committee of China
文摘Acryloyl terminated Poly (ethyleneoxide)macromonomers (PEO-A) with different PEO chain lengths have been prepared by deactivation of PEO alkoxide with acryloyl chloride. A new kind of amphiphilic polystyrene-g-poly (ethylene oxide)graft copolymer containing both microphase separated and PEO side chain structures has been synthesized from radical copolymerization of PEO-A macromonomer with styrene. After careful purification by a newly-developed method called 'selective dissolution', the well-defined structure of the purified copolymers was confirmed by IR, ~1H-NMR and GPC. Various experimental parameters controlling the copolymerization were studied in detail. The results indicated that the feed ratio of styrene to macromonomer(S/M) was the most important determining factor for the composition of the copolymers. A detailed 'comb- model' was proposed to describe the molecular structure of the graft copolymers. Finally, this amphiphilic graft copolymers may readily form microphase separated structures as clearly indicated by transmission electron microscopy.
基金supported by the National Science and Technology Planning Project (No.2011BAC08B00)the National High Technology Research and Development Program of China (863 Program)(No.2012AA03A611)
文摘In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.