A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein p...A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS= 53.7%) is blended with the SPEEK matrix (DS= 55.1%, 61.7%) to prepare SPEEKJSPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS = 61.7%) membrane dissolves completely in water at 70℃, whereas the swelling degree of the SPEEK (DS = 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80℃. From room temperature to 80℃, the methanol permeability of all SPEEK (DS = 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion 115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS = 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150℃. The proton conductivity of SPEEK (DS = 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S·cm^-1, matching that of Nafion 115 at 140℃ and 100% RH, while pure SPEEK (DS = 55.1%) membrane dissolves at 90℃. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.展开更多
Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation withou...Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation without any amidation catalyst.Here,using diamino-terminated poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)(PPO-PEO-PPO),Jeffamine ED-2003,enhances the compatibility between polyamide oligomer and polyether,which is better than the traditional route using hydroxyl-terminated polyether.The chemical structure of multiblock PEBAs,as well as the microphase separated structure with crystalline phase of polyamide and polyether,were confirmed by heteronuclear multiple-bond correlation spectrum,heteronuclear multiple quantum correlation spectrum,Fourier transform infrared spectroscopy(FT-IR),differential scanning calorimetry and dynamic mechanical analysis.The hydrophilic PEBA copolymers showed water adsorption ranging from 87.3%to 17.1%depending on the polyether content,and specially showed moisture responsive behavior within seconds when exposed to moisture.The corresponding mechanism was studied using time-resolved attenuated total reflectance FT-IR spectroscopy in the molecular level and the water diffusion coefficient was estimated to be 1.07×10^(–8)cm^(2)∙s^(-1).Two-dimensional correlation FT-IR spectra analysis was performed to confirm that the interaction between water and polyether phase was in preference to that between water and polyamide matrix,and water molecule only forms hydrogen bond with the polyether segment.Due to the incorporation of PEO segments,the PEBAs have the surface resistivity varying from 5.6×10^(9)to 6.5×10^(10)Ω,which makes PEBA potential candidate as permanent antistatic agent.展开更多
The iodine value (iodine number) and hydroxyl value are important analytical characteristics of fats and oils. The iodine (I<sub>2</sub>) required saturating the fatty acids present in 100 grams of the oil...The iodine value (iodine number) and hydroxyl value are important analytical characteristics of fats and oils. The iodine (I<sub>2</sub>) required saturating the fatty acids present in 100 grams of the oil or fat. Iodine value is a measure of the total number of double bonds (-C=C-) present in fats and oils. Unsaturated compounds contain molecules with double and triple bonds which are very reactive towards iodine. The iodine value has been determined according to Hanus with iodine monobromide in glacial acetic acid, and then the amount of iodine remaining unreacted is determined by titration using sodium thiosulfate volumetric standard solution. The hydroxyl value is the amount of potassium hydroxide in milligrams that is equivalent to the hydroxyl amount of 1 gram of the sample (mg KOH/g sample). Poloxyl Stearyl Ether is a mixture of the monostearyl ethers of mixed polyethylene glycols. It may contain various amounts of free stearyl alcohol and some free polyethylene glycol. In this study, the iodine value and hydroxyl value have been determined by titration in polyoxyl stearyl ether. Iodine value 1.84 g of I<sub>2</sub> absorbed/100g sample, and hydroxyl value 162.65 mg KOH/g sample have been found in poloxyl stearyl ether. The iodine value and hydroxyl value results met the United States Pharmacopeia specifications for Polyoxyl Stearyl Ether.展开更多
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi...Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.展开更多
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature...With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.展开更多
Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway...Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway of anaerobic degradation.On the basis of experimental study,Octa-BDE 197,Hepta-BDE 183,Hexa-BDE 153,Penta-BDE 99 and Tetra-BDE 47 were selected as the initial degradation objects,and their debromination degradation were studied using density functional theory.The structures were optimized by Gaussian 09 program.Furthermore,the molecular orbitals and charge distribution were analyzed.All C-Br bond dissociation energies at different positions including ortho,meta and para bromine atoms were calculated and the sequence of debromination was obtained.There is a close relationship between molecular structure,charge,molecular orbital and C-Br bond.All PBDEs exhibited similar debromination pathways with preferential removal of meta and para bromines.展开更多
A new electrophilic polymer, 2,4-dinitrophenyl ether of polyvinyl alcohol (PVA-DNP), having a degree of substitution of 0.5 was prepared from polyvinyl alcohol (PVA) and 1-fluro-2,4-dinitrobenzene (DNFB). The PVA-DNP ...A new electrophilic polymer, 2,4-dinitrophenyl ether of polyvinyl alcohol (PVA-DNP), having a degree of substitution of 0.5 was prepared from polyvinyl alcohol (PVA) and 1-fluro-2,4-dinitrobenzene (DNFB). The PVA-DNP polymer was characterized by NMR, IR, and UV-visible spectroscopy. The reaction of PVA-DNP with sodium methoxide was followed by NMR and UV-visible spectroscopy. Evidence of polymer bound spirocyclic SIGMA complex, C-1 and C-3 polymer bound DNP-methoxy SIGMA complexes and the formation and C-1 methoxy complex of 2,4-dinitroanisole was observed.展开更多
Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an ...In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an approach that not only rectifies lead leakage but also places paramount importance on the attainment of rigorous interfacial passivation.Crown ethers,notably benzo-18-crown-6-ether(B18C6),were strategically integrated at the perovskite-hole transport material interface.Crown ethers exhibit a dual role:efficiently sequestering and immobilizing Pb^(2+)ions through host-guest complexation and simultaneously establishing a robust interfacial passivation layer.Selected crown ether candidates,guided by density functional theory(DFT)calculations,demonstrated proficiency in binding Pb2+ions and optimizing interfacial energetics.Photovoltaic devices incorporating these materials achieved exceptional power conversion efficiency(PCE),notably 21.7%for B18C6,underscoring their efficacy in lead binding and interfacial passivation.Analytical techniques,including time-of-flight secondary ion mass spectrometry(ToF-SIMS),ultraviolet photoelectron spectroscopy(UPS),time-resolved photoluminescence(TRPL),and transient absorption spectroscopy(TAS),unequivocally affirmed Pb^(2+)ion capture and suppression of non-radiative recombination.Notably,these PSCs maintained efficiency even after enduring 300 h of exposure to 85%relative humidity.This research underscores the transformative potential of crown ethers,simultaneously addressing lead binding and stringent interfacial passivation for sustainable PSCs poised to commercialize and advance renewable energy applications.展开更多
Compared with the extensively used ester‐based electrolyte,the hard carbon(HC)electrode is more compatible with the ether‐based counterpart in sodium‐ion batteries,which can lead to improved cycling stability and r...Compared with the extensively used ester‐based electrolyte,the hard carbon(HC)electrode is more compatible with the ether‐based counterpart in sodium‐ion batteries,which can lead to improved cycling stability and robust rate capability.However,the impact of salt anion on the electrochemical performance of HC electrodes has yet to be fully understood.In this study,the anionic chemistry in regulating the stability of electrolytes and the performance of sodium‐ion batteries have been systematically investigated.This work shows discrepancies in the reductive stability of the anionic group,redox kinetics,and component/structure of solid electrolyte interface(SEI)with different salts(NaBF_(4),NaPF_(6),and NaSO_(3)CF_(3))in the typical ether solvent(diglyme).Particularly,the density functional theory calculation manifests the preferred decomposition of PF_(6)−due to the reduced reductive stability of anions in the solvation structure,thus leading to the formation of NaF‐rich SEI.Further investigation on redox kinetics reveals that the NaPF_(6)/diglyme can induce the fast ionic diffusion dynamic and low charge transfer barrier for HC electrode,thus resulting in superior sodium storage performance in terms of rate capability and cycling life,which outperforms those of NaBF_(4)/diglyme and NaSO_(3)CF_(3)/diglyme.Importantly,this work offers valuable insights for optimizing the electrochemical behaviors of electrode materials by regulating the anionic group in the electrolyte.展开更多
Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite l...Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr...The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.展开更多
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affect...Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.展开更多
The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective...The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.展开更多
Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its ...Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its supportive role,PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos.This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy,and the rationale would present an engaging topic in the field of anticancer research.Therefore,this editorial provides an overview of the mechanisms determining cancer cell fate,emphasizing the central role of PAR.It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.展开更多
Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compr...Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs.展开更多
基金Supported by the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).
文摘A sulfonated poly(ether ether ketone) (SPEEK) membrane with fairly high degree of sulfonation (DS) swells excessively and even dissolves at high temperature. To solve these problems, sulfonated phenolphthalein poly(ether sulfone) (SPES-C, DS= 53.7%) is blended with the SPEEK matrix (DS= 55.1%, 61.7%) to prepare SPEEKJSPES-C blend membrane. The decrease in swelling degree and methanol permeability of the membrane is dose-dependent. Pure SPEEK (DS = 61.7%) membrane dissolves completely in water at 70℃, whereas the swelling degree of the SPEEK (DS = 61.7%)/SPES-C (40%, by mass) membrane is 29.7% at 80℃. From room temperature to 80℃, the methanol permeability of all SPEEK (DS = 55.1%)/SPES-C blend membranes is about one order of magnitude lower than that of Nafion 115. At higher temperature, the addition of SPES-C polymer increases the dimensional stability and greater proton conductivity can be achieved. The SPEEK (DS = 55.1%)/SPES-C (40%, by mass) membrane can withstand temperatures up to 150℃. The proton conductivity of SPEEK (DS = 55.1%)/SPES-C (30%, by mass) membrane approaches 0.16 S·cm^-1, matching that of Nafion 115 at 140℃ and 100% RH, while pure SPEEK (DS = 55.1%) membrane dissolves at 90℃. The SPEEK/SPES-C blend membranes are promising for use in direct methanol fuel cells because of their good dimensional stability, high proton conductivity, and low methanol permeability.
基金financially supported by the National Natural Science Foundation of China (21978089 and 21878256)the Fundamental Research Funds for the Central Universities (22221818010)+1 种基金the 111 Project (B20031)the Program of Shanghai Subject Chief Scientist (21XD1433000)
文摘Functional multiblock poly(ether-b-amide)(PEBA)copolymers,comprised of PA1212(polyamide 1212)as hard segments and Jeffamine ED-2003 as soft segments,were successfully prepared via two-step melt polycondensation without any amidation catalyst.Here,using diamino-terminated poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide)(PPO-PEO-PPO),Jeffamine ED-2003,enhances the compatibility between polyamide oligomer and polyether,which is better than the traditional route using hydroxyl-terminated polyether.The chemical structure of multiblock PEBAs,as well as the microphase separated structure with crystalline phase of polyamide and polyether,were confirmed by heteronuclear multiple-bond correlation spectrum,heteronuclear multiple quantum correlation spectrum,Fourier transform infrared spectroscopy(FT-IR),differential scanning calorimetry and dynamic mechanical analysis.The hydrophilic PEBA copolymers showed water adsorption ranging from 87.3%to 17.1%depending on the polyether content,and specially showed moisture responsive behavior within seconds when exposed to moisture.The corresponding mechanism was studied using time-resolved attenuated total reflectance FT-IR spectroscopy in the molecular level and the water diffusion coefficient was estimated to be 1.07×10^(–8)cm^(2)∙s^(-1).Two-dimensional correlation FT-IR spectra analysis was performed to confirm that the interaction between water and polyether phase was in preference to that between water and polyamide matrix,and water molecule only forms hydrogen bond with the polyether segment.Due to the incorporation of PEO segments,the PEBAs have the surface resistivity varying from 5.6×10^(9)to 6.5×10^(10)Ω,which makes PEBA potential candidate as permanent antistatic agent.
文摘The iodine value (iodine number) and hydroxyl value are important analytical characteristics of fats and oils. The iodine (I<sub>2</sub>) required saturating the fatty acids present in 100 grams of the oil or fat. Iodine value is a measure of the total number of double bonds (-C=C-) present in fats and oils. Unsaturated compounds contain molecules with double and triple bonds which are very reactive towards iodine. The iodine value has been determined according to Hanus with iodine monobromide in glacial acetic acid, and then the amount of iodine remaining unreacted is determined by titration using sodium thiosulfate volumetric standard solution. The hydroxyl value is the amount of potassium hydroxide in milligrams that is equivalent to the hydroxyl amount of 1 gram of the sample (mg KOH/g sample). Poloxyl Stearyl Ether is a mixture of the monostearyl ethers of mixed polyethylene glycols. It may contain various amounts of free stearyl alcohol and some free polyethylene glycol. In this study, the iodine value and hydroxyl value have been determined by titration in polyoxyl stearyl ether. Iodine value 1.84 g of I<sub>2</sub> absorbed/100g sample, and hydroxyl value 162.65 mg KOH/g sample have been found in poloxyl stearyl ether. The iodine value and hydroxyl value results met the United States Pharmacopeia specifications for Polyoxyl Stearyl Ether.
基金supported by National Natural Science Foundation of China(Grant No.U1930113),ChinaNational Natural Science Foundation of China(52072036)
文摘Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.
基金The authors are grateful for the support and funding from the Foundation of National Natural Science Foundation of China(52373089 and 51973173)Startup Foundation of Chongqing Normal University(23XLB011),Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300561)Fundamental Research Funds for the Central Universities。
文摘With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment.
基金the National Natural Science Foundation of China(Nos.41406090,42176045)the Science Foundation of Qingdao Agricultural University(No.631302)+1 种基金the Fujian Key Laboratory of Functional Marine Sensing Materials,Minjiang University(No.MJUKF-FMSM202102)the Natural Science Foundation of Shandong Province(Nos.ZR2019 MB020,ZR2020MB119)。
文摘Polybrominated diphenyl ethers(PBDEs)are a kind of serious pollutants in the ocean.Biodegradation is considered as an economical and safe way for PBDEs removal and reductive debromination dominates the initial pathway of anaerobic degradation.On the basis of experimental study,Octa-BDE 197,Hepta-BDE 183,Hexa-BDE 153,Penta-BDE 99 and Tetra-BDE 47 were selected as the initial degradation objects,and their debromination degradation were studied using density functional theory.The structures were optimized by Gaussian 09 program.Furthermore,the molecular orbitals and charge distribution were analyzed.All C-Br bond dissociation energies at different positions including ortho,meta and para bromine atoms were calculated and the sequence of debromination was obtained.There is a close relationship between molecular structure,charge,molecular orbital and C-Br bond.All PBDEs exhibited similar debromination pathways with preferential removal of meta and para bromines.
文摘A new electrophilic polymer, 2,4-dinitrophenyl ether of polyvinyl alcohol (PVA-DNP), having a degree of substitution of 0.5 was prepared from polyvinyl alcohol (PVA) and 1-fluro-2,4-dinitrobenzene (DNFB). The PVA-DNP polymer was characterized by NMR, IR, and UV-visible spectroscopy. The reaction of PVA-DNP with sodium methoxide was followed by NMR and UV-visible spectroscopy. Evidence of polymer bound spirocyclic SIGMA complex, C-1 and C-3 polymer bound DNP-methoxy SIGMA complexes and the formation and C-1 methoxy complex of 2,4-dinitroanisole was observed.
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1F1A1047203)financially supported by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program(P0026100)+1 种基金the NRF grant funded by the Korea government(MSIT)(2021R1I1A1A01061036)financial support from the NRF grant funded by the Korea government(MSIT)(RS-2023-00213920)。
文摘In the domain of perovskite solar cells(PSCs),the imperative to reconcile impressive photovoltaic performance with lead-related issue and environmental stability has driven innovative solutions.This study pioneers an approach that not only rectifies lead leakage but also places paramount importance on the attainment of rigorous interfacial passivation.Crown ethers,notably benzo-18-crown-6-ether(B18C6),were strategically integrated at the perovskite-hole transport material interface.Crown ethers exhibit a dual role:efficiently sequestering and immobilizing Pb^(2+)ions through host-guest complexation and simultaneously establishing a robust interfacial passivation layer.Selected crown ether candidates,guided by density functional theory(DFT)calculations,demonstrated proficiency in binding Pb2+ions and optimizing interfacial energetics.Photovoltaic devices incorporating these materials achieved exceptional power conversion efficiency(PCE),notably 21.7%for B18C6,underscoring their efficacy in lead binding and interfacial passivation.Analytical techniques,including time-of-flight secondary ion mass spectrometry(ToF-SIMS),ultraviolet photoelectron spectroscopy(UPS),time-resolved photoluminescence(TRPL),and transient absorption spectroscopy(TAS),unequivocally affirmed Pb^(2+)ion capture and suppression of non-radiative recombination.Notably,these PSCs maintained efficiency even after enduring 300 h of exposure to 85%relative humidity.This research underscores the transformative potential of crown ethers,simultaneously addressing lead binding and stringent interfacial passivation for sustainable PSCs poised to commercialize and advance renewable energy applications.
基金Australian Research Council,Grant/Award Numbers:DP200101249,DP210101389,IH180100020Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210821National Natural Science Foundation of China,Grant/Award Number:22102141。
文摘Compared with the extensively used ester‐based electrolyte,the hard carbon(HC)electrode is more compatible with the ether‐based counterpart in sodium‐ion batteries,which can lead to improved cycling stability and robust rate capability.However,the impact of salt anion on the electrochemical performance of HC electrodes has yet to be fully understood.In this study,the anionic chemistry in regulating the stability of electrolytes and the performance of sodium‐ion batteries have been systematically investigated.This work shows discrepancies in the reductive stability of the anionic group,redox kinetics,and component/structure of solid electrolyte interface(SEI)with different salts(NaBF_(4),NaPF_(6),and NaSO_(3)CF_(3))in the typical ether solvent(diglyme).Particularly,the density functional theory calculation manifests the preferred decomposition of PF_(6)−due to the reduced reductive stability of anions in the solvation structure,thus leading to the formation of NaF‐rich SEI.Further investigation on redox kinetics reveals that the NaPF_(6)/diglyme can induce the fast ionic diffusion dynamic and low charge transfer barrier for HC electrode,thus resulting in superior sodium storage performance in terms of rate capability and cycling life,which outperforms those of NaBF_(4)/diglyme and NaSO_(3)CF_(3)/diglyme.Importantly,this work offers valuable insights for optimizing the electrochemical behaviors of electrode materials by regulating the anionic group in the electrolyte.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(no.2022R1A2C1006743)。
文摘Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金funding from the Natural Science Foundation of Hubei Province,China(Grant No.2022CFA031)supported by the Natural Science Foundation of China(Grant No.22309056).
文摘The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures.
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
基金supported by the National Natural Science Foundation of China(22008053,52002111)the Natural Science Foundation of Hebei Province(B2021208061,B2022208006,B2023208014)the Beijing Natural Science Foundation(Z200011).
文摘Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.
基金supported by National Natural Science Foundation of China(Grant No.22209012).
文摘The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.
文摘Poly(ADP-ribose)(PAR),a polymer of ADP-ribose,is synthesized by PAR po-lymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications.Beyond its supportive role,PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos.This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy,and the rationale would present an engaging topic in the field of anticancer research.Therefore,this editorial provides an overview of the mechanisms determining cancer cell fate,emphasizing the central role of PAR.It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.
基金supported by the National Natural Science Foundation of China(Grant Nos.51604089,51874110,22173066,and 21903058)Natural Science Foundation of Heilongjiang Province(Grant No.YQ2021B004).
文摘Polymer solid electrolytes(SPEs)based on the[solvate-Li+]complex structure have promising prospects in lithium metal batteries(LMBs)due to their unique ion transport mechanism.However,the solvation structure may compromise the mechanical performance and safety,hindering practical application of SPEs.In this work,a composite solid electrolyte(CSE)is designed through the organic-inorganic syner-gistic interaction among N,N-dimethylformamide(DMF),polycarbonate(PC),and Mg_(2)B_(2)O_(5) in poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP).Flame-retardant Mg_(2)B_(2)O_(5) nanowires provide non-flammability to the prepared CSEs,and the addition of PC improves the dispersion of Mg_(2)B_(2)O_(5) nanowires.Simultaneously,the organic-inorganic synergistic action of PC plasticizer and Mg_(2)B_(2)O_(5) nanowires pro-motes the dissociation degree of LiTFSI and reduces the crystallinity of PVDF-HFP,enabling rapid Li ion transport.Additionally,Raman spectroscopy and DFT calculations confirm the coordination between Mg atoms in Mg_(2)B_(2)O_(5) and N atoms in DMF,which exhibits Lewis base-like behavior attacking adjacent C-F and C-H bonds in PVDF-HFP while inducing dehydrofluorination of PVDF-HFP.Based on the syner-gistic coupling of Mg_(2)B_(2)O_(5),PC,and DMF in the PVDF-HFP matrix,the prepared CSE exhibits superior ion conductivity(9.78×10^(-4) s cm^(-1)).The assembled Li symmetric cells cycle stably for 3900 h at a current density of 0.1 mA cm^(-2) without short circuit.The LFP||Li cells assembled with PDL-Mg_(2)B_(2)O_(5)/PC CSEs show excellent rate capability and cycling performance,with a capacity retention of 83.3%after 1000 cycles at 0.5 C.This work provides a novel approach for the practical application of organic-inorganic Synergistic CSEs in LMBs.