In this paper we investigate optimal control problems governed by a advection-diffusion-reaction equation. We present a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are th...In this paper we investigate optimal control problems governed by a advection-diffusion-reaction equation. We present a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are the Ekeland’s variational principle combined with penalization and spike variation techniques.展开更多
In this note we announce the global boundedness for the solutions to a class of possibly degenerate parabolic equations by De-Giorgi’s iteration.In particular,the existence of weak solutions for possibly degenerate s...In this note we announce the global boundedness for the solutions to a class of possibly degenerate parabolic equations by De-Giorgi’s iteration.In particular,the existence of weak solutions for possibly degenerate stochastic differential equations with singular diffusion coefficients is obtained.展开更多
Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a rea...Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.展开更多
This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching ...This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.展开更多
The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open ...The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open issue to plan vehicle velocity and distribute output power between different supply units simultaneously due to the strongly coupling characteristic of the velocity planning and the power distribution. To address this issue, a flexible predictive power-split control strategy based on IVHS is proposed for electric vehicles(EVs) equipped with battery-supercapacitor system(BSS). Unlike hierarchical strategies to plan vehicle velocity and distribute output power separately, a monolayer model predictive control(MPC) method is employed to optimize them online at the same time. Firstly, a flexible velocity planning strategy is designed based on the signal phase and time(SPAT) information received from IVHS and then the Pontryagin’s minimum principle(PMP) is adopted to formulate the optimal control problem of the BSS. Then, the flexible velocity planning strategy and the optimal control problem of BSS are embedded into an MPC framework, which is online solved using the shooting method in a fashion of receding horizon. Simulation results verify that the proposed strategy achieves a superior performance compared with the hierarchical strategy in terms of transportation efficiency, battery capacity loss, energy consumption and computation time.展开更多
Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style=&...Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style="font-family:Verdana;">. Generally, humans are infected with listeriosis after eating contaminated food. Listeriosis mostly affects people with weakened immune systems, pregnant women and newborns. In this paper, a model describing the dynamics o</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">f Listeriosis is developed and analysed using ordinary differential equations. The model was analysed both quantitatively and qualitatively for its local and global stability, basic reproductive number and parameter contributions to the basic reproductive number to understand the impact of each parameter on the disease spread. The Listeriosis model has been extended to include time dependent control variables such as treatment of both humans and animals, vaccination and education of humans. Pontryagin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s Maximum Principle was introduced to obtain the best optimal control strategies required for curbing Listeriosis infections. Numerical simulation was performed and the results displayed graphically and discussed. Cost effectiveness analysis was conducted using the intervention averted ratio (IAR) concepts and it was revealed that the most effective intervention strategy is the treatment of infect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> humans and animals.展开更多
The optimal use of intervention strategies to mitigate the spread of Nipah Virus (NiV) using optimal control technique is studied in this paper. First of all we formulate a dynamic model of NiV infections with variabl...The optimal use of intervention strategies to mitigate the spread of Nipah Virus (NiV) using optimal control technique is studied in this paper. First of all we formulate a dynamic model of NiV infections with variable size population and two control strategies where creating awareness and treatment are considered as controls. We intend to find the optimal combination of these two control strategies that will minimize the cost of the two control measures and as a result the number of infectious individuals will decrease. We establish the existence for the optimal controls and Pontryagin’s maximum principle is used to characterize the optimal controls. The numerical simulation suggests that optimal control technique is much more effective to minimize the infected individuals and the corresponding cost of the two controls. It is also monitored that in the case of high contact rate, controls have to work for longer period of time to get the desired result. Numerical simulation reveals that the spread of Nipah virus can be controlled effectively if we apply control strategy at early stage.展开更多
The implementation of optimal control strategies involving preventive measures and antiviral treatment can significantly reduce the number of clinical cases of influenza. In this paper, a model for the transmission dy...The implementation of optimal control strategies involving preventive measures and antiviral treatment can significantly reduce the number of clinical cases of influenza. In this paper, a model for the transmission dynamics of influenza is formulated and two control strategies involving preventive measures (awareness campaign, washing hand, using hand sanitizer, wearing mask) and treatment are considered and used to minimize the total number of infected individuals and associated cost of using these two controls. The resulting optimality system is solved numerically. Hamiltonian is formulated to investigate the existence of the optimal control, in the optimal control model. Pontryagin’s Maximum Principle is applied to describe the control variables and the objective function is designed to reduce both the infection and the cost of interventions. From the numerical simulation, it is observed that in the case of high contact rate (β = 3), both the controls work for a longer period of time to reduce the disease burden. The optimal control analysis and numerical simulations reveal that the interventions reduce the number of exposed and infected individuals.展开更多
The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena a...The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.展开更多
This paper establishes a stochastic maximum principle for a stochastic control of mean-field model which is governed by a Lévy process involving continuous and impulse control.The authors also show the existence ...This paper establishes a stochastic maximum principle for a stochastic control of mean-field model which is governed by a Lévy process involving continuous and impulse control.The authors also show the existence and uniqueness of the solution to a jump-diffusion mean-field stochastic differential equation involving impulse control.As for its application,a mean-variance portfolio selection problem has been solved.展开更多
For the purpose of solving optimal control problem of a wall-crawling mobile robot working on spherical containers, we propose the Hamel's formalism for Pontryagin Maximum Principle,which gives a general framework...For the purpose of solving optimal control problem of a wall-crawling mobile robot working on spherical containers, we propose the Hamel's formalism for Pontryagin Maximum Principle,which gives a general framework for the optimal control of a mechanical system with velocity constraints, especially nonholonomic constraints. The effectiveness of the proposed framework is shown by the simulations for the above problem.展开更多
文摘In this paper we investigate optimal control problems governed by a advection-diffusion-reaction equation. We present a method for deriving conditions in the form of Pontryagin’s principle. The main tools used are the Ekeland’s variational principle combined with penalization and spike variation techniques.
基金National Natural Science Foundation of China(11731009).
文摘In this note we announce the global boundedness for the solutions to a class of possibly degenerate parabolic equations by De-Giorgi’s iteration.In particular,the existence of weak solutions for possibly degenerate stochastic differential equations with singular diffusion coefficients is obtained.
基金Supported by International Technology Cooperation Program of Science and Technology Commission of Shanghai Municipality of China(Grant No.21160710600)National Nature Science Foundation of China(Grant No.52372393)Shanghai Pujiang Program of China(Grant No.21PJD075).
文摘Fuel consumption is one of the main concerns for heavy-duty trucks.Predictive cruise control(PCC)provides an intriguing opportunity to reduce fuel consumption by using the upcoming road information.In this study,a real-time implementable PCC,which simultaneously optimizes engine torque and gear shifting,is proposed for heavy-duty trucks.To minimize fuel consumption,the problem of the PCC is formulated as a nonlinear model predictive control(MPC),in which the upcoming road elevation information is used.Finding the solution of the nonlinear MPC is time consuming;thus,a real-time implementable solver is developed based on Pontryagin’s maximum principle and indirect shooting method.Dynamic programming(DP)algorithm,as a global optimization algorithm,is used as a performance benchmark for the proposed solver.Simulation,hardware-in-the-loop and real-truck experiments are conducted to verify the performance of the proposed controller.The results demonstrate that the MPC-based solution performs nearly as well as the DP-based solution,with less than 1%deviation for testing roads.Moreover,the proposed co-optimization controller is implementable in a real-truck,and the proposed MPC-based PCC algorithm achieves a fuel-saving rate of 7.9%without compromising the truck’s travel time.
基金supported by Vietnam Academy of Science and Technology(Grant No.VAST01.04/22-23)。
文摘This paper studies a single degree of freedom system under free vibration and controlled by a general semiactive damping.A general integral of squared error is considered as the performance index.A one-time switching damping controller is proposed and optimized.The pontryagin maximum principle is used to prove that no other form of semi-active damping can provide the better performance than the proposed one-time switching damping.
基金supported by the National Natural Science Foundation of China (62173303)the Fundamental Research for the Zhejiang P rovincial Universities (RF-C2020003)。
文摘The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open issue to plan vehicle velocity and distribute output power between different supply units simultaneously due to the strongly coupling characteristic of the velocity planning and the power distribution. To address this issue, a flexible predictive power-split control strategy based on IVHS is proposed for electric vehicles(EVs) equipped with battery-supercapacitor system(BSS). Unlike hierarchical strategies to plan vehicle velocity and distribute output power separately, a monolayer model predictive control(MPC) method is employed to optimize them online at the same time. Firstly, a flexible velocity planning strategy is designed based on the signal phase and time(SPAT) information received from IVHS and then the Pontryagin’s minimum principle(PMP) is adopted to formulate the optimal control problem of the BSS. Then, the flexible velocity planning strategy and the optimal control problem of BSS are embedded into an MPC framework, which is online solved using the shooting method in a fashion of receding horizon. Simulation results verify that the proposed strategy achieves a superior performance compared with the hierarchical strategy in terms of transportation efficiency, battery capacity loss, energy consumption and computation time.
文摘Listeriosis is an illness caused by the germ</span><i><span style="font-family:Verdana;"> <i>Listeria</i> <i>monocytogenes</i></span></i><span style="font-family:Verdana;">. Generally, humans are infected with listeriosis after eating contaminated food. Listeriosis mostly affects people with weakened immune systems, pregnant women and newborns. In this paper, a model describing the dynamics o</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">f Listeriosis is developed and analysed using ordinary differential equations. The model was analysed both quantitatively and qualitatively for its local and global stability, basic reproductive number and parameter contributions to the basic reproductive number to understand the impact of each parameter on the disease spread. The Listeriosis model has been extended to include time dependent control variables such as treatment of both humans and animals, vaccination and education of humans. Pontryagin</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s Maximum Principle was introduced to obtain the best optimal control strategies required for curbing Listeriosis infections. Numerical simulation was performed and the results displayed graphically and discussed. Cost effectiveness analysis was conducted using the intervention averted ratio (IAR) concepts and it was revealed that the most effective intervention strategy is the treatment of infect</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> humans and animals.
文摘The optimal use of intervention strategies to mitigate the spread of Nipah Virus (NiV) using optimal control technique is studied in this paper. First of all we formulate a dynamic model of NiV infections with variable size population and two control strategies where creating awareness and treatment are considered as controls. We intend to find the optimal combination of these two control strategies that will minimize the cost of the two control measures and as a result the number of infectious individuals will decrease. We establish the existence for the optimal controls and Pontryagin’s maximum principle is used to characterize the optimal controls. The numerical simulation suggests that optimal control technique is much more effective to minimize the infected individuals and the corresponding cost of the two controls. It is also monitored that in the case of high contact rate, controls have to work for longer period of time to get the desired result. Numerical simulation reveals that the spread of Nipah virus can be controlled effectively if we apply control strategy at early stage.
文摘The implementation of optimal control strategies involving preventive measures and antiviral treatment can significantly reduce the number of clinical cases of influenza. In this paper, a model for the transmission dynamics of influenza is formulated and two control strategies involving preventive measures (awareness campaign, washing hand, using hand sanitizer, wearing mask) and treatment are considered and used to minimize the total number of infected individuals and associated cost of using these two controls. The resulting optimality system is solved numerically. Hamiltonian is formulated to investigate the existence of the optimal control, in the optimal control model. Pontryagin’s Maximum Principle is applied to describe the control variables and the objective function is designed to reduce both the infection and the cost of interventions. From the numerical simulation, it is observed that in the case of high contact rate (β = 3), both the controls work for a longer period of time to reduce the disease burden. The optimal control analysis and numerical simulations reveal that the interventions reduce the number of exposed and infected individuals.
文摘The purpose of this paper is to introduce to you, the Western people, nowadays a “widely unknown” Japanese thermodynamicist by the name of Motoyosi Sugita and his study on the thermodynamics of transient phenomena and his theory of life. This is because although he was one of the top theoretical physicists in Japan before, during and after WWII and after WWII he promoted the establishment of the biophysical society of Japan as one of the founding members, he himself and his studies themselves have seemed to be totally forgotten nowadays in spite that his study was absolutely important for the study of life. Therefore, in this paper I would like to present what kind of person he was and what he studied in physics as a review on the physics work of Motoyosi Sugita for the first time. I will follow his past studies to introduce his ideas in theoretical physics as well as in biophysics as follows: He proposed the bright ideas such as the quasi-static change in the broad sense, the virtual heat, and the field of chemical potential etc. in order to establish his own theory of thermodynamics of transient phenomena, as the generalization of the Onsager-Prigogine’s theory of the irreversible processes. By the concept of the field of chemical potential that acquired the nonlinear transport, he was seemingly successful to exceed and go beyond the scope of Onsager and Prigogine. Once he established his thermodynamics, he explored the existence of the 4th law of thermodynamics for the foundation of theory of life. He applied it to broad categories of transient phenomena including life and life being such as the theory of metabolism. He regarded the 4th law of thermodynamics as the maximum principle in transient phenomena. He tried to prove it all life long. Since I have recently found that his maximum principle can be included in more general maximum principle, which was known as the Pontryagin’s maximum principle in the theory of optimal control, I would like to explain such theories produced by Motoyosi Sugita as detailed as possible. And also I have put short history of Motoyosi Sugita’s personal life in order for you to know him well. I hope that this article helps you to know this wonderful man and understand what he did in the past, which was totally forgotten in the world and even in Japan.
基金supported by the National Science Foundation of China under Grant No.11671404the Fundamental Research Funds for the Central Universities of Central South University under Grant No.10553320171635.
文摘This paper establishes a stochastic maximum principle for a stochastic control of mean-field model which is governed by a Lévy process involving continuous and impulse control.The authors also show the existence and uniqueness of the solution to a jump-diffusion mean-field stochastic differential equation involving impulse control.As for its application,a mean-variance portfolio selection problem has been solved.
基金the National Natural Science Foundation of China(Grant 11872107)for support
文摘For the purpose of solving optimal control problem of a wall-crawling mobile robot working on spherical containers, we propose the Hamel's formalism for Pontryagin Maximum Principle,which gives a general framework for the optimal control of a mechanical system with velocity constraints, especially nonholonomic constraints. The effectiveness of the proposed framework is shown by the simulations for the above problem.