There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible D...There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure.展开更多
This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). ...This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.展开更多
The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The qualit...The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The quality of the power received in the distribution system is altered because of the losses in the transmission system.The losses in the transmission system are mitigated using the FACTS(Flexible AC Transmission System)controller,among these controllers UPFC(Unified Power Flow Controller)plays a vital role in controlling the shunt and series reactive powers in the bus of the power system.The conventional topology of the UPFC consists of AC-DC converter and energy stored in the DC link and DC-AC converter injected a voltage in series to the bus which is to be controlled.Whereas a new topology based on matrix converter can replace the dual converters and perform the required task.The construction of 2-bus,7-bus and IEEE-14-bus power system is designed and modeled.MC-UPFC(Matrix Converter Based Unified Power Flow Controller)is designed and constructed.The MC-UPFC is the rich topology in the FACTS which is capable of controlling both the transmission parameters simultaneously with the switching technique of direct power control by the smooth sliding control which gives less ripple in the injecting control parameters such as control voltage(Vc)and voltage angle(α).By implementing MC-UPFC the real and reactive power can be controlled simultaneously and independently.The control techniques were designed based on the PID(Proportional Integral Derivative)with sliding surface power control,FLC(Fuzzy Logic Controller)and ANN(Artificial Neural Network)and the performances of Vc andαof the controllers are investigated.Hence the sliding surface and relevant control switching state of the MC can be controlled by the FLC which gives the robust and autonomous decision made in the selection of the appropriate switching state for the effective real power control in the power system.The work has been carried out in the MATLAB Simulink simulator which gives the finest controlling features and simple design procedures and monitoring of the output.展开更多
Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, i...Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.展开更多
As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Neverthe...As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases.展开更多
As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS...As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.展开更多
The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be r...The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be regulated from 0 to the rated value. However,there would be relatively large harmonics in the output voltage if the voltage modulation ratio is small. In order to analyze the influence of MMC-UPFC on the harmonics of the power grid, the theoretical calculation method and spectra of the output voltage harmonics of MMC are presented. Subsequently, the calculation formulas of the harmonics in the power grid with UPFC are proposed. Based on it, the influence of UPFC on the grid voltage harmonics is evaluated, when MMC-UPFC is operated with different submodular numbers and voltage modular ratios. Eventually, the proposed analysis method is validated using digital simulation. The study results would provide guideline for the design and operation of MMC-UPFC project.展开更多
In this paper,distributed power flow controller(DPFC)constraints are analyzed.The energy balance relationship between fundamental wave and third harmonic in series and shunt-side converter is deduced.A proportional in...In this paper,distributed power flow controller(DPFC)constraints are analyzed.The energy balance relationship between fundamental wave and third harmonic in series and shunt-side converter is deduced.A proportional integral(PI)controller of the DPFC is constructed.The PI controller uses the voltage amplitude and phase angle injected into the system in the series side,along with the modulation ratio of the three-phase converter on the shunt side as the control variables.A multiobjective coordinated control equation is proposed,which factors the constraints of the energy balance between series and shunt side,device capacity limit,safe operation limit,fundamental component,as well as third harmonic component of the injection voltage at the series side.The equation minimizes the variance between the actual value of the control target and its given value to ensure that the DC capacitor voltage,both in the series and shunt side,is stable at target value.Simulations are conducted to verify correctness and effectiveness of the proposed control method.展开更多
Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engine...Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engineering demonstration of a distributed power flow controller,it is urgent to establish a digital/analog simulation platform that supports closed-loop real-time simulation of a distributed power flow controller.In this paper,the electromagnetic transient model of a distributed power flow controller is established on ADPSS(advanced digital power system simulator).The rapid control prototype realized by dSPACE is connected to ADPSS to form a digital/analog simulation platform for a distributed power flow controller.Through a voltage control and power flow control simulation of the test system with a distributed power flow controller,the correctness and effectiveness of the constructed simulation platform are verified,which provides a new way for the verification of the new theory of a distributed power flow controller.展开更多
Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of me...Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of meshed HVDC grids with the PFC is presented,and then,the issue of over-voltage on the thyristor based PFC is described and analyzed.Through the analysis of different operating modes of the full-bridge sub-module,the mechanism of over-voltage ride through of the MMPFC is indicated.The control strategy of the MMPFC,which is used to control branch current and keep capacitor voltage balancing,is elaborated.Finally,the performance on current regulation,bidirectional operation and over-voltage ride through is simulated and verified in a built model with PSCAD/EMTDC.展开更多
The restructuring of the electric power market has led to complex power transmission congestion problems.Additionally,scheduled power flows in the transmission line,as well as spontaneous power exchanges have also ris...The restructuring of the electric power market has led to complex power transmission congestion problems.Additionally,scheduled power flows in the transmission line,as well as spontaneous power exchanges have also risen sharply in recent years.The proper placement of IPFC can improve the transmission line congestion problem to a great extent.This paper proposes a disparity line utilization factor(DLUF)for the optimal placement of IPFC to control the congestion in transmission lines.DLUF determines the difference between the percentages of Mega Volt Ampere utilization of each line connected to the same bus.The IPFC is placed in the lines with maximum DLUF.A multiobjective function consisting of reduction of active power loss,minimization of total voltage deviations,minimization of security margin and minimization of installed IPFC capacity is considered for the optimal tuning of IPFC using differential evolution algorithm.The proposed method is implemented for IEEE-30 bus test system under different loading conditions and the results are presented and analyzed to establish the effectiveness on the reduction of congestion.展开更多
The two main challenges of medium voltage direct current(MVDC)distribution network are the flexible control of power flow(PF)and fault protection.In this paper,the power flow controller(PFC)is introduced to regulate t...The two main challenges of medium voltage direct current(MVDC)distribution network are the flexible control of power flow(PF)and fault protection.In this paper,the power flow controller(PFC)is introduced to regulate the PF and inhibit the fault current during the DC fault.The coordination strategy of series-parallel PFC(SP-PFC)and hybrid DC circuit breaker(DCCB)is proposed.By regulating the polarity and magnitude of SP-PFC output voltage during the fault,the rising speed of fault current can be suppressed so as to reduce the breaking current of hybrid DCCB.The access mode of SP-PFC to the MVDC distribution network and its topology are analyzed,and the coordination strategy between SP-PFC and hybrid DCCB is investigated.Moreover,the emergency control and bypass control strategies of SP-PFC are developed.On this basis,the mathematical model of SP-PFC in different fault stages is derived.With the equivalent model of SP-PFC,the fault current of the MVDC distribution network can be calculated accurately.A simulation model of the MVDC distribution network containing SP-PFC is established in MATLAB/Simulink.The fault current calculation result is compared with the simulation result,and the effectiveness of the proposed coordination strategy is verified.展开更多
In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPF...In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPFC)with fault current limiting function.The topology structure,operation principle,and equivalent circuit of MM-DCPFC are introduced,and such a structure has the advantages of modularity and scalability.The power balance mechanism is studied and a hierarchical power balance control strategy is proposed.The results show that MM-DCPFC can achieve internal power exchange,which avoids the use of external power supply.The fault characteristics of MM-DCPFC are analyzed,fault current limiting and self-protection methods are proposed,and the factors affecting the current limiting capability are studied.The simulation models are established in PLECS,and the simulation results verify the effectiveness of MM-DCPFC in power flow control,fault current limiting,and scalability.In addition,a prototype is developed to validate the function and control method of MM-DCPFC.展开更多
With the continuous expansion of power systems and the application of power electronic equipment, forced oscillation has become one of the key problems in terms of system safety and stability. In this paper, an interl...With the continuous expansion of power systems and the application of power electronic equipment, forced oscillation has become one of the key problems in terms of system safety and stability. In this paper, an interline power flow controller (IPFC) is used as a power suppression carrier and its mechanism is analyzed using the linearized state-space method to improve the system damping ratio. It is shown that although the IPFC can suppress forced oscillation with well-designed parameters, its capability of improving the system damping ratio is limited. Thus, combined with the repetitive control method, an additional repetitive controller (ARC) is proposed to further dampen the forced power oscillation. The ARC control scheme is characterized by outstanding tracking performance to a system steady reference value, and the main IPFC controller with the ARC can provide higher damping, and further reduce the amplitude of oscillations to zero compared with a supplementary damping controller (SDC). Simulation results show that the IPFC with an ARC can not only greatly reduce the oscillation amplitude, but also actively output the compensation power according to the reference value of the ARC tracking system.展开更多
The increase of energy consumption has caused power systems to operate close to the limit of their capacity.The distributed power flow controller(DPFC),as a new member of distributed flexible AC transmission systems,i...The increase of energy consumption has caused power systems to operate close to the limit of their capacity.The distributed power flow controller(DPFC),as a new member of distributed flexible AC transmission systems,is introduced to remove this barrier.This paper proposes an optimal DPFC configuration method to enhance system loadability considering economic performance based on mixed integer linear programming.The conflicting behavior of system loadability and DPFC investment is analyzed and optimal solutions are calculated.Thereafter,the fuzzy decision-making method is implemented for determining the most preferred solution.In the most preferred solution obtained,the investment of DPFCs is minimized to find the optimal number,locations and set points.Simulation results on the IEEERTS79 system demonstrate that the proposed method is effective and reasonable.展开更多
Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)device...Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)devices can effectively mitigate LFOs via stability control.We propose a novel method that mitigates FOs by shifting the resonant frequency.Based on the features of the linearized swing equation of a generator, a resonant frequency shift can be achieved by controlling the synchronous torque coefficient using a unified power flow controller(UPFC).Because of the resonance mechanism, the steady-state response of an FO can be effectively mitigated when the resonant frequency changes from the original one, which was close to the disturbance frequency.The principle is that a change in resonant frequency affects the resonance condition.Simulations are conducted in a single-machine infinite-bus(SMIB) system, and the simulation results verify that the method is straightforward to implement and can significantly mitigate FOs.The controller robustness when the resonant frequency is not accurately estimated is also analyzed in the simulations.展开更多
A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function...A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.展开更多
Control strategy of unified power flow controller(UPFC)utilizing dq decoupling control is deduced in this paper,which can closely follow the control orders of the active and reactive power.The subsynchronous resonance...Control strategy of unified power flow controller(UPFC)utilizing dq decoupling control is deduced in this paper,which can closely follow the control orders of the active and reactive power.The subsynchronous resonance(SSR)characteristics of a series compensated system equipped with UPFC are studied,and the results reveal that SSR characteristics of the system may vary significantly with UPFC in service or not.Consequently,supplementary subsynchronous damping controller(SSDC)for UPFC is proposed and investigated,and the effectiveness of the proposed SSDC is verified by damping torque analysis and time domain simulations.展开更多
Integration of Solar Photovoltaic (PV) generation into an existing distribution system has many impacts on the system, with the power flow being one of the major issues. This impact is not generic for any network, but...Integration of Solar Photovoltaic (PV) generation into an existing distribution system has many impacts on the system, with the power flow being one of the major issues. This impact is not generic for any network, but it may manifest itself either positively or negatively, depending on the grid configuration, interface control modes, operation mode, and load profile. Grid-connected PV systems have three control options of the local voltage controller of the interface DC-AC converter. These control modes are Power Factor control, voltage control, and Droop Voltage control. This paper aims at evaluating and comparing the impacts of those control modes on the grid power flow. A set of evaluation criteria and indices is defined and mathematically formulated. Based on the requirements of the used program (Power Factory Dig Silent V14.1.3), a computation plan (algorithm) has been proposed. The algorithm has been applied to a typical weak network and a wide range of simulations has been carried out. Simulation results have been thoroughly discussed and important findings have been concluded.展开更多
基金funded by National Natural Science Foundation of China (52177074).
文摘There are issues with flexible DC transmission system such as a lack of control freedom over power flow.In order to tackle these issues,a DC power flow controller(DCPFC)is incorporated into a multi-terminal,flexible DC power grid.In recent years,a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability.This work proposes a model predictive control(MPC)strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance.Initially,the mathematical model of a multi-terminal DC power grid with a multi-port interline DC power flow controller is developed,and the relationship between each regulated variable and control variable is determined;The power flow controller is then discretized,and the cost function and weight factor are built with numerous control objectives.Sub module sorting method and nearest level approximation modulation regulate the power flow controller;Lastly,theMATLAB/Simulink simulation platformis used to verify the correctness of the establishedmathematicalmodel and the control performance of the suggestedMPC strategy.Finally,it is demonstrated that the control strategy possesses the benefits of robust dynamic performance,multiobjective control,and a simple structure.
文摘This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.
文摘The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The quality of the power received in the distribution system is altered because of the losses in the transmission system.The losses in the transmission system are mitigated using the FACTS(Flexible AC Transmission System)controller,among these controllers UPFC(Unified Power Flow Controller)plays a vital role in controlling the shunt and series reactive powers in the bus of the power system.The conventional topology of the UPFC consists of AC-DC converter and energy stored in the DC link and DC-AC converter injected a voltage in series to the bus which is to be controlled.Whereas a new topology based on matrix converter can replace the dual converters and perform the required task.The construction of 2-bus,7-bus and IEEE-14-bus power system is designed and modeled.MC-UPFC(Matrix Converter Based Unified Power Flow Controller)is designed and constructed.The MC-UPFC is the rich topology in the FACTS which is capable of controlling both the transmission parameters simultaneously with the switching technique of direct power control by the smooth sliding control which gives less ripple in the injecting control parameters such as control voltage(Vc)and voltage angle(α).By implementing MC-UPFC the real and reactive power can be controlled simultaneously and independently.The control techniques were designed based on the PID(Proportional Integral Derivative)with sliding surface power control,FLC(Fuzzy Logic Controller)and ANN(Artificial Neural Network)and the performances of Vc andαof the controllers are investigated.Hence the sliding surface and relevant control switching state of the MC can be controlled by the FLC which gives the robust and autonomous decision made in the selection of the appropriate switching state for the effective real power control in the power system.The work has been carried out in the MATLAB Simulink simulator which gives the finest controlling features and simple design procedures and monitoring of the output.
文摘Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.
基金supported by the Natural Science Foundation of Sichuan Province of China(No.2022NSFSC0262)the Fundamental Research Funds for the Central Universities(No.2022SCU12005).
文摘As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases.
文摘As the demand for more efficient and adaptable power distribution systems intensifies, especially in rural areas, innovative solutions like the Capacitor-Coupled Substation with a Controllable Network Transformer (CCS-CNT) are becoming increasingly critical. Traditional power distribution networks, often limited by unidirectional flow capabilities and inflexibility, struggle to meet the complex demands of modern energy systems. The CCS-CNT system offers a transformative approach by enabling bidirectional power flow between high-voltage transmission lines and local distribution networks, a feature that is essential for integrating renewable energy sources and ensuring reliable electrification in underserved regions. This paper presents a detailed mathematical representation of power flow within the CCS-CNT system, emphasizing the control of both active and reactive power through the adjustment of voltage levels and phase angles. A control algorithm is developed to dynamically manage power flow, ensuring optimal performance by minimizing losses and maintaining voltage stability across the network. The proposed CCS-CNT system demonstrates significant potential in enhancing the efficiency and reliability of power distribution, making it particularly suited for rural electrification and other applications where traditional methods fall short. The findings underscore the system's capability to adapt to varying operational conditions, offering a robust solution for modern power distribution challenges.
基金supported by State Grid Corporation of China(SGCC)’s Major Science and Technology Demonstrative Project of UPFC in West Nanjing Power Grid(No.SGCC-2015-011)
文摘The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be regulated from 0 to the rated value. However,there would be relatively large harmonics in the output voltage if the voltage modulation ratio is small. In order to analyze the influence of MMC-UPFC on the harmonics of the power grid, the theoretical calculation method and spectra of the output voltage harmonics of MMC are presented. Subsequently, the calculation formulas of the harmonics in the power grid with UPFC are proposed. Based on it, the influence of UPFC on the grid voltage harmonics is evaluated, when MMC-UPFC is operated with different submodular numbers and voltage modular ratios. Eventually, the proposed analysis method is validated using digital simulation. The study results would provide guideline for the design and operation of MMC-UPFC project.
基金This work was supported in part by the State Grid Corporation of China(Grant No.52150016000Y)in part by the State Key Laboratory of Power Grid Safety and Energy Conservation(China Electric Power Research Institute)Open Fund,the Major Projects of Technical Innovation in Hubei(Grant No.2018AAA050)the Major Projects of Technical Innovation in Hubei(Grant No.2019AAA016).
文摘In this paper,distributed power flow controller(DPFC)constraints are analyzed.The energy balance relationship between fundamental wave and third harmonic in series and shunt-side converter is deduced.A proportional integral(PI)controller of the DPFC is constructed.The PI controller uses the voltage amplitude and phase angle injected into the system in the series side,along with the modulation ratio of the three-phase converter on the shunt side as the control variables.A multiobjective coordinated control equation is proposed,which factors the constraints of the energy balance between series and shunt side,device capacity limit,safe operation limit,fundamental component,as well as third harmonic component of the injection voltage at the series side.The equation minimizes the variance between the actual value of the control target and its given value to ensure that the DC capacitor voltage,both in the series and shunt side,is stable at target value.Simulations are conducted to verify correctness and effectiveness of the proposed control method.
基金the National Natural Science Foundation of China(51177114)the Major Projects of Technical Innovation in Huhei(2018AAA050,2019AAA016).
文摘Distributed power flow controller,which is among the most powerful distributed flexible transmission equipments,is still only in the stage of the oretical research and digital simulation.In order to promote the engineering demonstration of a distributed power flow controller,it is urgent to establish a digital/analog simulation platform that supports closed-loop real-time simulation of a distributed power flow controller.In this paper,the electromagnetic transient model of a distributed power flow controller is established on ADPSS(advanced digital power system simulator).The rapid control prototype realized by dSPACE is connected to ADPSS to form a digital/analog simulation platform for a distributed power flow controller.Through a voltage control and power flow control simulation of the test system with a distributed power flow controller,the correctness and effectiveness of the constructed simulation platform are verified,which provides a new way for the verification of the new theory of a distributed power flow controller.
基金supported by the National High Technology Research and Development Program of China("863"Program)(Grant No.2012AA050205)
文摘Based on the comparison of existing power flow controllers(PFC)in meshed HVDC grids,the full-bridge modular multilevel converter based PFC(MMPFC)is proposed.At first,the general branch current calculation method of meshed HVDC grids with the PFC is presented,and then,the issue of over-voltage on the thyristor based PFC is described and analyzed.Through the analysis of different operating modes of the full-bridge sub-module,the mechanism of over-voltage ride through of the MMPFC is indicated.The control strategy of the MMPFC,which is used to control branch current and keep capacitor voltage balancing,is elaborated.Finally,the performance on current regulation,bidirectional operation and over-voltage ride through is simulated and verified in a built model with PSCAD/EMTDC.
文摘The restructuring of the electric power market has led to complex power transmission congestion problems.Additionally,scheduled power flows in the transmission line,as well as spontaneous power exchanges have also risen sharply in recent years.The proper placement of IPFC can improve the transmission line congestion problem to a great extent.This paper proposes a disparity line utilization factor(DLUF)for the optimal placement of IPFC to control the congestion in transmission lines.DLUF determines the difference between the percentages of Mega Volt Ampere utilization of each line connected to the same bus.The IPFC is placed in the lines with maximum DLUF.A multiobjective function consisting of reduction of active power loss,minimization of total voltage deviations,minimization of security margin and minimization of installed IPFC capacity is considered for the optimal tuning of IPFC using differential evolution algorithm.The proposed method is implemented for IEEE-30 bus test system under different loading conditions and the results are presented and analyzed to establish the effectiveness on the reduction of congestion.
基金supported by the National Key Research and Development Program of China(No.2018YFB0904600)the National Natural Science Foundation of China(No.52077017)。
文摘The two main challenges of medium voltage direct current(MVDC)distribution network are the flexible control of power flow(PF)and fault protection.In this paper,the power flow controller(PFC)is introduced to regulate the PF and inhibit the fault current during the DC fault.The coordination strategy of series-parallel PFC(SP-PFC)and hybrid DC circuit breaker(DCCB)is proposed.By regulating the polarity and magnitude of SP-PFC output voltage during the fault,the rising speed of fault current can be suppressed so as to reduce the breaking current of hybrid DCCB.The access mode of SP-PFC to the MVDC distribution network and its topology are analyzed,and the coordination strategy between SP-PFC and hybrid DCCB is investigated.Moreover,the emergency control and bypass control strategies of SP-PFC are developed.On this basis,the mathematical model of SP-PFC in different fault stages is derived.With the equivalent model of SP-PFC,the fault current of the MVDC distribution network can be calculated accurately.A simulation model of the MVDC distribution network containing SP-PFC is established in MATLAB/Simulink.The fault current calculation result is compared with the simulation result,and the effectiveness of the proposed coordination strategy is verified.
基金supported in part by National Key R&D Program of China(No.2018YFB0904600)National Natural Science Foundation of China(No.51807053)。
文摘In order to overcome the problems of power flow control and fault current limiting in multi-terminal high voltage direct current(MTDC)grids,this paper proposes a modular multi-terminal DC power flow controller(MM-DCPFC)with fault current limiting function.The topology structure,operation principle,and equivalent circuit of MM-DCPFC are introduced,and such a structure has the advantages of modularity and scalability.The power balance mechanism is studied and a hierarchical power balance control strategy is proposed.The results show that MM-DCPFC can achieve internal power exchange,which avoids the use of external power supply.The fault characteristics of MM-DCPFC are analyzed,fault current limiting and self-protection methods are proposed,and the factors affecting the current limiting capability are studied.The simulation models are established in PLECS,and the simulation results verify the effectiveness of MM-DCPFC in power flow control,fault current limiting,and scalability.In addition,a prototype is developed to validate the function and control method of MM-DCPFC.
基金funded by Jiangsu electric power company project“key technology research on planning and demonstration application of inter line power flow controller”,J2020088.
文摘With the continuous expansion of power systems and the application of power electronic equipment, forced oscillation has become one of the key problems in terms of system safety and stability. In this paper, an interline power flow controller (IPFC) is used as a power suppression carrier and its mechanism is analyzed using the linearized state-space method to improve the system damping ratio. It is shown that although the IPFC can suppress forced oscillation with well-designed parameters, its capability of improving the system damping ratio is limited. Thus, combined with the repetitive control method, an additional repetitive controller (ARC) is proposed to further dampen the forced power oscillation. The ARC control scheme is characterized by outstanding tracking performance to a system steady reference value, and the main IPFC controller with the ARC can provide higher damping, and further reduce the amplitude of oscillations to zero compared with a supplementary damping controller (SDC). Simulation results show that the IPFC with an ARC can not only greatly reduce the oscillation amplitude, but also actively output the compensation power according to the reference value of the ARC tracking system.
基金supported in part by the National Natural Science Foundation of China(No.51577030)in part by the project of State Grid Corporation of China(Research on flexible AC power flow control technology of transmission network based on a distributed power flow controller)(No.8516000700).
文摘The increase of energy consumption has caused power systems to operate close to the limit of their capacity.The distributed power flow controller(DPFC),as a new member of distributed flexible AC transmission systems,is introduced to remove this barrier.This paper proposes an optimal DPFC configuration method to enhance system loadability considering economic performance based on mixed integer linear programming.The conflicting behavior of system loadability and DPFC investment is analyzed and optimal solutions are calculated.Thereafter,the fuzzy decision-making method is implemented for determining the most preferred solution.In the most preferred solution obtained,the investment of DPFCs is minimized to find the optimal number,locations and set points.Simulation results on the IEEERTS79 system demonstrate that the proposed method is effective and reasonable.
基金supported by National Natural Science Foundation of China (No.51577032)State Grid Corporation of China (No.5210K017000C)
文摘Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)devices can effectively mitigate LFOs via stability control.We propose a novel method that mitigates FOs by shifting the resonant frequency.Based on the features of the linearized swing equation of a generator, a resonant frequency shift can be achieved by controlling the synchronous torque coefficient using a unified power flow controller(UPFC).Because of the resonance mechanism, the steady-state response of an FO can be effectively mitigated when the resonant frequency changes from the original one, which was close to the disturbance frequency.The principle is that a change in resonant frequency affects the resonance condition.Simulations are conducted in a single-machine infinite-bus(SMIB) system, and the simulation results verify that the method is straightforward to implement and can significantly mitigate FOs.The controller robustness when the resonant frequency is not accurately estimated is also analyzed in the simulations.
文摘A general model of flexible isolation systems which involves both the passive and active control factors is established by inserting actuators into an passive isolation system. And the power flow transmission function in such a system as with multi disturbance, multi mounts, passive isolators and actuators is deduced. By means of the numerical simulation method, the influence of actuators on power flow transmission characteristic is studied. And as a conclusion, the passive active synthetic control strategy of power flow is summarized.
基金supported by National Natural Science Foundation of China (No.51607092)State Grid Corporation of China (SGCC)'s Major Science and Technology Demonstrative Project of UPFC in West Nanjing Power Grid (No.SGCC-2015-011)
文摘Control strategy of unified power flow controller(UPFC)utilizing dq decoupling control is deduced in this paper,which can closely follow the control orders of the active and reactive power.The subsynchronous resonance(SSR)characteristics of a series compensated system equipped with UPFC are studied,and the results reveal that SSR characteristics of the system may vary significantly with UPFC in service or not.Consequently,supplementary subsynchronous damping controller(SSDC)for UPFC is proposed and investigated,and the effectiveness of the proposed SSDC is verified by damping torque analysis and time domain simulations.
文摘Integration of Solar Photovoltaic (PV) generation into an existing distribution system has many impacts on the system, with the power flow being one of the major issues. This impact is not generic for any network, but it may manifest itself either positively or negatively, depending on the grid configuration, interface control modes, operation mode, and load profile. Grid-connected PV systems have three control options of the local voltage controller of the interface DC-AC converter. These control modes are Power Factor control, voltage control, and Droop Voltage control. This paper aims at evaluating and comparing the impacts of those control modes on the grid power flow. A set of evaluation criteria and indices is defined and mathematically formulated. Based on the requirements of the used program (Power Factory Dig Silent V14.1.3), a computation plan (algorithm) has been proposed. The algorithm has been applied to a typical weak network and a wide range of simulations has been carried out. Simulation results have been thoroughly discussed and important findings have been concluded.