Postoperative pancreatic fistula(POPF)is a frequent complication after pancre-atectomy,leading to increased morbidity and mortality.Optimizing prediction models for POPF has emerged as a critical focus in surgical res...Postoperative pancreatic fistula(POPF)is a frequent complication after pancre-atectomy,leading to increased morbidity and mortality.Optimizing prediction models for POPF has emerged as a critical focus in surgical research.Although over sixty models following pancreaticoduodenectomy,predominantly reliant on a variety of clinical,surgical,and radiological parameters,have been documented,their predictive accuracy remains suboptimal in external validation and across diverse populations.As models after distal pancreatectomy continue to be pro-gressively reported,their external validation is eagerly anticipated.Conversely,POPF prediction after central pancreatectomy is in its nascent stage,warranting urgent need for further development and validation.The potential of machine learning and big data analytics offers promising prospects for enhancing the accuracy of prediction models by incorporating an extensive array of variables and optimizing algorithm performance.Moreover,there is potential for the development of personalized prediction models based on patient-or pancreas-specific factors and postoperative serum or drain fluid biomarkers to improve accuracy in identifying individuals at risk of POPF.In the future,prospective multicenter studies and the integration of novel imaging technologies,such as artificial intelligence-based radiomics,may further refine predictive models.Addressing these issues is anticipated to revolutionize risk stratification,clinical decision-making,and postoperative management in patients undergoing pancre-atectomy.展开更多
BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to dev...BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients.展开更多
The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a...The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a landslide dam.To address this gap,we conducted a study using the smoothed particle hydrodynamics numerical method to investigate the evolution of landslide dams.Our study included 17 numerical simulations to examine the effects of several factors on the geometry of landslide dams,including valley inclination,sliding angle,landslide velocity,and landslide mass repose angle.Based on this,three rapid prediction models were established for calculating the maximum height,the minimum height,and the maximum width of a landslide dam.The results show that the downstream width of a landslide dam remarkably increases with the valley inclination.The position of the maximum dam height along the valley direction is independent of external factors and is always located in the middle of the landslide width area.In contrast,that position of the maximum dam height across the valley direction is significantly influenced by the sliding angle and landslide velocity.To validate our models,we applied them to three typical landslide dams and found that the calculated values of the landslide dam geometry were in good agreement with the actual values.The findings of the current study provide a better understanding of the evolution and geometry of landslide dams,giving crucial guidance for the prediction and early warning of landslide dam disasters.展开更多
Obscure gastrointestinal bleeding(OGIB)has traditionally been defined as gastrointestinal bleeding whose source remains unidentified after bidirectional endoscopy.OGIB can present as overt bleeding or occult bleeding,...Obscure gastrointestinal bleeding(OGIB)has traditionally been defined as gastrointestinal bleeding whose source remains unidentified after bidirectional endoscopy.OGIB can present as overt bleeding or occult bleeding,and small bowel lesions are the most common causes.The small bowel can be evaluated using capsule endoscopy,device-assisted enteroscopy,computed tomography enterography,or magnetic resonance enterography.Once the cause of smallbowel bleeding is identified and targeted therapeutic intervention is completed,the patient can be managed with routine visits.However,diagnostic tests may produce negative results,and some patients with small bowel bleeding,regardless of diagnostic findings,may experience rebleeding.Predicting those at risk of rebleeding can help clinicians form individualized surveillance plans.Several studies have identified different factors associated with rebleeding,and a limited number of studies have attempted to create prediction models for recurrence.This article describes prediction models developed so far for identifying patients with OGIB who are at greater risk of rebleeding.These models may aid clinicians in forming tailored patient management and surveillance.展开更多
In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results sh...In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results show that all the grey prediction models that are strictly derived from x^(0)(k) +az^(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homogeneous exponential sequence can be accomplished. However, the models derived from dx^(1)/dt + ax^(1)= b are only close to those derived from x^(0)(k) + az^(1)(k) = b provided that |a| has to satisfy|a| 0.1; neither could the unbiased simulation for the homogeneous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.展开更多
Hepatocellular carcinoma (HCC) is a malignant disease with limited therapeutic options due to its aggressive progression. It places heaW burden on most low and middle income countries to treat HCC patients. Nowadays...Hepatocellular carcinoma (HCC) is a malignant disease with limited therapeutic options due to its aggressive progression. It places heaW burden on most low and middle income countries to treat HCC patients. Nowadays accurate HCC risk predictions can help making decisions on the need for HCC surveillance and antiviral therapy. HCC risk prediction models based on major risk factors of HCC are useful and helpful in providing adequate surveillance strategies to individuals who have different risk levels. Several risk prediction models among cohorts of different populations for estimating HCC incidence have been presented recently by using simple, efficient, and ready-to-use parameters. Moreover, using predictive scoring systems to assess HCC development can provide suggestions to improve clinical and public health approaches, making them more cost-effective and effort-effective, for inducing personalized surveillance programs according to risk stratification. In this review, the features of risk prediction models of HCC across different populations were summarized, and the perspectives of HCC risk prediction models were discussed as well.展开更多
There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this ...There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this paper introduces a universal method to achieve nonlinear models identification. Two key quantities, which are called nonlinear irreducible auto-correlation (NIAC) and generalized nonlinear irreducible auto-correlation (GNIAC), are defined and discussed. NIAC and GNIAC correspond with intrinstic irreducible auto-(dependency) (IAD) and generalized irreducible auto-(dependency) (GIAD) of time series respectively. By investigating the evolving trend of NIAC and GNIAC, the optimal auto-regressive order of nonlinear auto-regressive models could be determined naturally. Subsequently, an efficient algorithm computing NIAC and GNIAC is discussed. Experiments on simulating data sets and typical nonlinear prediction models indicate remarkable correlation between optimal auto-regressive order and the highest order that NIAC-GNIAC have a remarkable non-zero value, therefore demonstrate the validity of the proposal in this paper.展开更多
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens...The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.展开更多
Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(...Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.展开更多
Background:The effect of bariatric surgery on type 2 diabetes mellitus(T2DM)control can be assessed based on predictive models of T2DM remission.Various models have been externally verified internationally.However,lon...Background:The effect of bariatric surgery on type 2 diabetes mellitus(T2DM)control can be assessed based on predictive models of T2DM remission.Various models have been externally verified internationally.However,long-term validated results after laparoscopic sleeve gastrectomy(LSG)surgery are lacking.The best model for the Chinese population is also unknown.Methods:We retrospectively analyzed Chinese population data 5 years after LSG at Beijing Shijitan Hospital in China between March 2009 and December 2016.The independent t-test,Mann–Whitney U test,and chi-squared test were used to compare characteristics between T2DM remission and non-remission groups.We evaluated the predictive efficacy of each model for longterm T2DM remission after LSG by calculating the area under the curve(AUC),sensitivity,specificity,Youden index,positive predictive value(PPV),negative predictive value(NPV),and predicted-to-observed ratio,and performed calibration using Hosmer–Lemeshow test for 11 prediction models.Results:We enrolled 108 patients,including 44(40.7%)men,with a mean age of 35.5 years.The mean body mass index was 40.3±9.1 kg/m^(2),the percentage of excess weight loss(%EWL)was(75.9±30.4)%,and the percentage of total weight loss(%TWL)was(29.1±10.6)%.The mean glycated hemoglobin A1c(HbA1c)level was(7.3±1.8)%preoperatively and decreased to(5.9±1.0)%5 years after LSG.The 5-year postoperative complete and partial remission rates of T2DM were 50.9%[55/108]and 27.8%[30/108],respectively.Six models,i.e.,"ABCD",individualized metabolic surgery(IMS),advanced-DiaRem,DiaBetter,Dixon et al’s regression model,and Panunzi et al’s regression model,showed a good discrimination ability(all AUC>0.8).The"ABCD"(sensitivity,74%;specificity,80%;AUC,0.82[95%confidence interval[CI]:0.74–0.89]),IMS(sensitivity,78%;specificity,84%;AUC,0.82[95%CI:0.73–0.89]),and Panunzi et al’s regression models(sensitivity,78%;specificity,91%;AUC,0.86[95%CI:0.78–0.92])showed good discernibility.In the Hosmer–Lemeshow goodness-of-fit test,except for DiaRem(P<0.01),DiaBetter(P<0.01),Hayes et al(P=0.03),Park et al(P=0.02),and Ramos-Levi et al’s(P<0.01)models,all models had a satifactory fit results(P>0.05).The P values of calibration results of the"ABCD"and IMS were 0.07 and 0.14,respectively.The predicted-to-observed ratios of the"ABCD"and IMS were 0.87 and 0.89,respectively.Conclusion:The prediction model IMS was recommended for clinical use because of excellent predictive performance,good statistical test results,and simple and practical design features.展开更多
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e...The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives.展开更多
Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of tra...Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health.展开更多
With the development of information and communication technologies,all public tertiary hospitals in China began to use online outpatient appointment systems.However,the phenomenon of patient no-shows in online outpati...With the development of information and communication technologies,all public tertiary hospitals in China began to use online outpatient appointment systems.However,the phenomenon of patient no-shows in online outpatient appointments is becoming more serious.The objective of this study is to design a prediction model for patient no-shows,thereby assisting hospitals in making relevant decisions,and reducing the probability of patient no-show behavior.We used 382,004 original online outpatient appointment records,and divided the data set into a training set(N_(1)=286,503),and a validation set(N_(2)=95,501).We used machine learning algorithms such as logistic regression,k-nearest neighbor(KNN),boosting,decision tree(DT),random forest(RF)and bagging to design prediction models for patient no-show in online outpatient appointments.The patient no-show rate of online outpatient appointment was 11.1%(N=42,224).From the validation set,bagging had the highest area under the ROC curve and AUC value,which was 0.990,followed by random forest and boosting models,which were 0.987 and 0.976,respectively.In contrast,compared with the previous prediction models,the area under ROC and AUC values of the logistic regression,decision tree,and k-nearest neighbors were lower at 0.597,0.499 and 0.843,respectively.This study demonstrates the possibility of using data from multiple sources to predict patient no-shows.The prediction model results can provide decision basis for hospitals to reduce medical resource waste,develop effective outpatient appointment policies,and optimize operations.展开更多
BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune ce...BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.展开更多
COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be...COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions.展开更多
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ...BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.展开更多
Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack ...Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).展开更多
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b...With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling.展开更多
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh...A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
文摘Postoperative pancreatic fistula(POPF)is a frequent complication after pancre-atectomy,leading to increased morbidity and mortality.Optimizing prediction models for POPF has emerged as a critical focus in surgical research.Although over sixty models following pancreaticoduodenectomy,predominantly reliant on a variety of clinical,surgical,and radiological parameters,have been documented,their predictive accuracy remains suboptimal in external validation and across diverse populations.As models after distal pancreatectomy continue to be pro-gressively reported,their external validation is eagerly anticipated.Conversely,POPF prediction after central pancreatectomy is in its nascent stage,warranting urgent need for further development and validation.The potential of machine learning and big data analytics offers promising prospects for enhancing the accuracy of prediction models by incorporating an extensive array of variables and optimizing algorithm performance.Moreover,there is potential for the development of personalized prediction models based on patient-or pancreas-specific factors and postoperative serum or drain fluid biomarkers to improve accuracy in identifying individuals at risk of POPF.In the future,prospective multicenter studies and the integration of novel imaging technologies,such as artificial intelligence-based radiomics,may further refine predictive models.Addressing these issues is anticipated to revolutionize risk stratification,clinical decision-making,and postoperative management in patients undergoing pancre-atectomy.
基金Supported by National Natural Science Foundation of China,No.81802777.
文摘BACKGROUND Colorectal cancer(CRC)is characterized by high heterogeneity,aggressiveness,and high morbidity and mortality rates.With machine learning(ML)algorithms,patient,tumor,and treatment features can be used to develop and validate models for predicting survival.In addition,important variables can be screened and different applications can be provided that could serve as vital references when making clinical decisions and potentially improving patient outcomes in clinical settings.AIM To construct prognostic prediction models and screen important variables for patients with stageⅠtoⅢCRC.METHODS More than 1000 postoperative CRC patients were grouped according to survival time(with cutoff values of 3 years and 5 years)and assigned to training and testing cohorts(7:3).For each 3-category survival time,predictions were made by 4 ML algorithms(all-variable and important variable-only datasets),each of which was validated via 5-fold cross-validation and bootstrap validation.Important variables were screened with multivariable regression methods.Model performance was evaluated and compared before and after variable screening with the area under the curve(AUC).SHapley Additive exPlanations(SHAP)further demonstrated the impact of important variables on model decision-making.Nomograms were constructed for practical model application.RESULTS Our ML models performed well;the model performance before and after important parameter identification was consistent,and variable screening was effective.The highest pre-and postscreening model AUCs 95%confidence intervals in the testing set were 0.87(0.81-0.92)and 0.89(0.84-0.93)for overall survival,0.75(0.69-0.82)and 0.73(0.64-0.81)for disease-free survival,0.95(0.88-1.00)and 0.88(0.75-0.97)for recurrence-free survival,and 0.76(0.47-0.95)and 0.80(0.53-0.94)for distant metastasis-free survival.Repeated cross-validation and bootstrap validation were performed in both the training and testing datasets.The SHAP values of the important variables were consistent with the clinicopathological characteristics of patients with tumors.The nomograms were created.CONCLUSION We constructed a comprehensive,high-accuracy,important variable-based ML architecture for predicting the 3-category survival times.This architecture could serve as a vital reference for managing CRC patients.
基金funding from the National Natural Science Foundation of China(42207228,51879036,51579032)the Liaoning Revitalization Talents Program(XLYC2002036)the Sichuan Science and Technology Program(2022NSFSC1060)。
文摘The geometry of a landslide dam plays a critical role in its stability and failure mode,and is influenced by the damming process.However,there is a lack of understanding of the factors that affect the 3D geometry of a landslide dam.To address this gap,we conducted a study using the smoothed particle hydrodynamics numerical method to investigate the evolution of landslide dams.Our study included 17 numerical simulations to examine the effects of several factors on the geometry of landslide dams,including valley inclination,sliding angle,landslide velocity,and landslide mass repose angle.Based on this,three rapid prediction models were established for calculating the maximum height,the minimum height,and the maximum width of a landslide dam.The results show that the downstream width of a landslide dam remarkably increases with the valley inclination.The position of the maximum dam height along the valley direction is independent of external factors and is always located in the middle of the landslide width area.In contrast,that position of the maximum dam height across the valley direction is significantly influenced by the sliding angle and landslide velocity.To validate our models,we applied them to three typical landslide dams and found that the calculated values of the landslide dam geometry were in good agreement with the actual values.The findings of the current study provide a better understanding of the evolution and geometry of landslide dams,giving crucial guidance for the prediction and early warning of landslide dam disasters.
文摘Obscure gastrointestinal bleeding(OGIB)has traditionally been defined as gastrointestinal bleeding whose source remains unidentified after bidirectional endoscopy.OGIB can present as overt bleeding or occult bleeding,and small bowel lesions are the most common causes.The small bowel can be evaluated using capsule endoscopy,device-assisted enteroscopy,computed tomography enterography,or magnetic resonance enterography.Once the cause of smallbowel bleeding is identified and targeted therapeutic intervention is completed,the patient can be managed with routine visits.However,diagnostic tests may produce negative results,and some patients with small bowel bleeding,regardless of diagnostic findings,may experience rebleeding.Predicting those at risk of rebleeding can help clinicians form individualized surveillance plans.Several studies have identified different factors associated with rebleeding,and a limited number of studies have attempted to create prediction models for recurrence.This article describes prediction models developed so far for identifying patients with OGIB who are at greater risk of rebleeding.These models may aid clinicians in forming tailored patient management and surveillance.
基金supported by the National Natural Science Foundation of China(1147105951375517+5 种基金71271226)the China Postdoctoral Science Foundation Funded Project(2014M560712)Chongqing Frontier and Applied Basic Research Project(cstc2014jcyj A00024)the Ministry of Education of Humanities and Social Sciences Youth Foundation(14YJAZH033)the Chongqing Municipal Education Scientific Planning Project(2012-GX-142)the Higher School Teaching Reform Research Project in Chongqing(1202010)
文摘In order to deeply research the structure discrepancy and modeling mechanism among different grey prediction models, the equivalence and unbiasedness of grey prediction models are analyzed and verified. The results show that all the grey prediction models that are strictly derived from x^(0)(k) +az^(1)(k) = b have the identical model structure and simulation precision. Moreover, the unbiased simulation for the homogeneous exponential sequence can be accomplished. However, the models derived from dx^(1)/dt + ax^(1)= b are only close to those derived from x^(0)(k) + az^(1)(k) = b provided that |a| has to satisfy|a| 0.1; neither could the unbiased simulation for the homogeneous exponential sequence be achieved. The above conclusions are proved and verified through some theorems and examples.
基金supported by funds from the National Key Basic Research Program "973 project" (2015CB554000)the State Key Project Specialized for Infectious Diseases of China (No.2008ZX10002-015 and 2012ZX10002008-002)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.81421001)
文摘Hepatocellular carcinoma (HCC) is a malignant disease with limited therapeutic options due to its aggressive progression. It places heaW burden on most low and middle income countries to treat HCC patients. Nowadays accurate HCC risk predictions can help making decisions on the need for HCC surveillance and antiviral therapy. HCC risk prediction models based on major risk factors of HCC are useful and helpful in providing adequate surveillance strategies to individuals who have different risk levels. Several risk prediction models among cohorts of different populations for estimating HCC incidence have been presented recently by using simple, efficient, and ready-to-use parameters. Moreover, using predictive scoring systems to assess HCC development can provide suggestions to improve clinical and public health approaches, making them more cost-effective and effort-effective, for inducing personalized surveillance programs according to risk stratification. In this review, the features of risk prediction models of HCC across different populations were summarized, and the perspectives of HCC risk prediction models were discussed as well.
文摘There is still an obstacle to prevent neural network from wider and more effective applications, i.e., the lack of effective theories of models identification. Based on information theory and its generalization, this paper introduces a universal method to achieve nonlinear models identification. Two key quantities, which are called nonlinear irreducible auto-correlation (NIAC) and generalized nonlinear irreducible auto-correlation (GNIAC), are defined and discussed. NIAC and GNIAC correspond with intrinstic irreducible auto-(dependency) (IAD) and generalized irreducible auto-(dependency) (GIAD) of time series respectively. By investigating the evolving trend of NIAC and GNIAC, the optimal auto-regressive order of nonlinear auto-regressive models could be determined naturally. Subsequently, an efficient algorithm computing NIAC and GNIAC is discussed. Experiments on simulating data sets and typical nonlinear prediction models indicate remarkable correlation between optimal auto-regressive order and the highest order that NIAC-GNIAC have a remarkable non-zero value, therefore demonstrate the validity of the proposal in this paper.
基金Project(201606090050)supported by China Scholarship CouncilProject(51278104)supported by the National Natural Science Foundation of China+2 种基金Project(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,ChinaProject(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.
基金Indian Institute of Technology Bombay for providing funding (Project code:13IRCCSG001)
文摘Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.
基金supported by Clinical Cooperation Ability Construction Project of Chinese and Western Medicine for Major and Difficult Diseases(Department of Medical Administration,National Administration of Traditional Chinese Medicine[2018]No.3)
文摘Background:The effect of bariatric surgery on type 2 diabetes mellitus(T2DM)control can be assessed based on predictive models of T2DM remission.Various models have been externally verified internationally.However,long-term validated results after laparoscopic sleeve gastrectomy(LSG)surgery are lacking.The best model for the Chinese population is also unknown.Methods:We retrospectively analyzed Chinese population data 5 years after LSG at Beijing Shijitan Hospital in China between March 2009 and December 2016.The independent t-test,Mann–Whitney U test,and chi-squared test were used to compare characteristics between T2DM remission and non-remission groups.We evaluated the predictive efficacy of each model for longterm T2DM remission after LSG by calculating the area under the curve(AUC),sensitivity,specificity,Youden index,positive predictive value(PPV),negative predictive value(NPV),and predicted-to-observed ratio,and performed calibration using Hosmer–Lemeshow test for 11 prediction models.Results:We enrolled 108 patients,including 44(40.7%)men,with a mean age of 35.5 years.The mean body mass index was 40.3±9.1 kg/m^(2),the percentage of excess weight loss(%EWL)was(75.9±30.4)%,and the percentage of total weight loss(%TWL)was(29.1±10.6)%.The mean glycated hemoglobin A1c(HbA1c)level was(7.3±1.8)%preoperatively and decreased to(5.9±1.0)%5 years after LSG.The 5-year postoperative complete and partial remission rates of T2DM were 50.9%[55/108]and 27.8%[30/108],respectively.Six models,i.e.,"ABCD",individualized metabolic surgery(IMS),advanced-DiaRem,DiaBetter,Dixon et al’s regression model,and Panunzi et al’s regression model,showed a good discrimination ability(all AUC>0.8).The"ABCD"(sensitivity,74%;specificity,80%;AUC,0.82[95%confidence interval[CI]:0.74–0.89]),IMS(sensitivity,78%;specificity,84%;AUC,0.82[95%CI:0.73–0.89]),and Panunzi et al’s regression models(sensitivity,78%;specificity,91%;AUC,0.86[95%CI:0.78–0.92])showed good discernibility.In the Hosmer–Lemeshow goodness-of-fit test,except for DiaRem(P<0.01),DiaBetter(P<0.01),Hayes et al(P=0.03),Park et al(P=0.02),and Ramos-Levi et al’s(P<0.01)models,all models had a satifactory fit results(P>0.05).The P values of calibration results of the"ABCD"and IMS were 0.07 and 0.14,respectively.The predicted-to-observed ratios of the"ABCD"and IMS were 0.87 and 0.89,respectively.Conclusion:The prediction model IMS was recommended for clinical use because of excellent predictive performance,good statistical test results,and simple and practical design features.
文摘The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives.
文摘Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health.
基金National Natural Science Foundation Program of China[No.71971092],[No.71671073]and[71810107003].
文摘With the development of information and communication technologies,all public tertiary hospitals in China began to use online outpatient appointment systems.However,the phenomenon of patient no-shows in online outpatient appointments is becoming more serious.The objective of this study is to design a prediction model for patient no-shows,thereby assisting hospitals in making relevant decisions,and reducing the probability of patient no-show behavior.We used 382,004 original online outpatient appointment records,and divided the data set into a training set(N_(1)=286,503),and a validation set(N_(2)=95,501).We used machine learning algorithms such as logistic regression,k-nearest neighbor(KNN),boosting,decision tree(DT),random forest(RF)and bagging to design prediction models for patient no-show in online outpatient appointments.The patient no-show rate of online outpatient appointment was 11.1%(N=42,224).From the validation set,bagging had the highest area under the ROC curve and AUC value,which was 0.990,followed by random forest and boosting models,which were 0.987 and 0.976,respectively.In contrast,compared with the previous prediction models,the area under ROC and AUC values of the logistic regression,decision tree,and k-nearest neighbors were lower at 0.597,0.499 and 0.843,respectively.This study demonstrates the possibility of using data from multiple sources to predict patient no-shows.The prediction model results can provide decision basis for hospitals to reduce medical resource waste,develop effective outpatient appointment policies,and optimize operations.
基金Supported by Program of Shanghai Academic Research Leader,No.22XD1404800.
文摘BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number RI-44-0525.
文摘COVID-19 has significantly impacted the growth prediction of a pandemic,and it is critical in determining how to battle and track the disease progression.In this case,COVID-19 data is a time-series dataset that can be projected using different methodologies.Thus,this work aims to gauge the spread of the outbreak severity over time.Furthermore,data analytics and Machine Learning(ML)techniques are employed to gain a broader understanding of virus infections.We have simulated,adjusted,and fitted several statistical time-series forecasting models,linearML models,and nonlinear ML models.Examples of these models are Logistic Regression,Lasso,Ridge,ElasticNet,Huber Regressor,Lasso Lars,Passive Aggressive Regressor,K-Neighbors Regressor,Decision Tree Regressor,Extra Trees Regressor,Support Vector Regressions(SVR),AdaBoost Regressor,Random Forest Regressor,Bagging Regressor,AuoRegression,MovingAverage,Gradient Boosting Regressor,Autoregressive Moving Average(ARMA),Auto-Regressive Integrated Moving Averages(ARIMA),SimpleExpSmoothing,Exponential Smoothing,Holt-Winters,Simple Moving Average,Weighted Moving Average,Croston,and naive Bayes.Furthermore,our suggested methodology includes the development and evaluation of ensemble models built on top of the best-performing statistical and ML-based prediction methods.A third stage in the proposed system is to examine three different implementations to determine which model delivers the best performance.Then,this best method is used for future forecasts,and consequently,we can collect the most accurate and dependable predictions.
文摘BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions.
基金supported by the National Natural Science Foundation of China(81825009,82071505,81901358)the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2MC&T-B-099,2019-I2M-5–006)+2 种基金the Program of Chinese Institute for Brain Research Beijing(2020-NKX-XM-12)the King’s College London-Peking University Health Science Center Joint Institute for Medical Research(BMU2020KCL001,BMU2019LCKXJ012)the National Key R&D Program of China(2021YFF1201103,2016YFC1307000).
文摘Background:Choosing the appropriate antipsychotic drug(APD)treatment for patients with schizophrenia(SCZ)can be challenging,as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers.Previous studies have indicated the association between treatment response and genetic and epigenetic factors,but no effective biomarkers have been identified.Hence,further research is imperative to enhance precision medicine in SCZ treatment.Methods:Participants with SCZ were recruited from two randomized trials.The discovery cohort was recruited from the CAPOC trial(n=2307)involved 6 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,Quetiapine,Aripiprazole,Ziprasidone,and Haloperidol/Perphenazine(subsequently equally assigned to one or the other)groups.The external validation cohort was recruited from the CAPEC trial(n=1379),which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine,Risperidone,and Aripiprazole groups.Additionally,healthy controls(n=275)from the local community were utilized as a genetic/epigenetic reference.The genetic and epigenetic(DNA methylation)risks of SCZ were assessed using the polygenic risk score(PRS)and polymethylation score,respectively.The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis,methylation quantitative trait loci,colocalization,and promoteranchored chromatin interaction.Machine learning was used to develop a prediction model for treatment response,which was evaluated for accuracy and clinical benefit using the area under curve(AUC)for classification,R^(2) for regression,and decision curve analysis.Results:Six risk genes for SCZ(LINC01795,DDHD2,SBNO1,KCNG2,SEMA7A,and RUFY1)involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response.The developed and externally validated prediction model,which incorporated clinical information,PRS,genetic risk score(GRS),and proxy methylation level(proxyDNAm),demonstrated positive benefits for a wide range of patients receiving different APDs,regardless of sex[discovery cohort:AUC=0.874(95%CI 0.867-0.881),R^(2)=0.478;external validation cohort:AUC=0.851(95%CI 0.841-0.861),R^(2)=0.507].Conclusions:This study presents a promising precision medicine approach to evaluate treatment response,which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.Trial registration Chinese Clinical Trial Registry(https://www.chictr.org.cn/),18 Aug 2009 retrospectively registered:CAPOC-ChiCTR-RNC-09000521(https://www.chictr.org.cn/showproj.aspx?proj=9014),CAPEC-ChiCTRRNC-09000522(https://www.chictr.org.cn/showproj.aspx?proj=9013).
基金This work was supported by the Beijing Nova Program[Z211100002121136]Open Fund Project of State Key Laboratory of Lithospheric Evolution[SKL-K202103]+1 种基金Joint Funds of National Natural Science Foundation of China[U19B6003-02]the National Natural Science Foundation of China[42302149].We would like to thank Prof.Zhu Rixiang from the Institute of Geology and Geophysics,Chinese Academy of Sciences.
文摘With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling.
基金the High-Performance Computing Platform of Beijing University of Chemical Technology(BUCT)for supporting this papersupported by the Fundamental Research Funds for the Central Universities(JD2319)+2 种基金the CNOOC Technical Cooperation Project(ZX2022ZCTYF7612)the National Natural Science Foundation of China(51775029,52004014)the Chinese Universities Scientific Fund(XK2020-04)。
文摘A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.