Marine algae are valuable sources of health-promoting molecules that have been consumed by Asians for decades.Among aquatic flora,marine algae stand out in terms of high content of marine algae polysaccharides(MAP)suc...Marine algae are valuable sources of health-promoting molecules that have been consumed by Asians for decades.Among aquatic flora,marine algae stand out in terms of high content of marine algae polysaccharides(MAP)such as carrageenan,alginate,fucoidan,laminaran,agarose,rhamnan,and ulvan.When hydrolyzed,MAP generate marine algae oligosaccharides(MAO),which have attracted interest in recent years due to their superior solubility compared with MAP.Besides,MAO have been demonstrated numerous biological activities including antioxidant,antidiabetic,anti-inflammatory,antimicrobial,and prebiotic activities.Thus,this review summarizes the main chemical classes of MAO,their sources,and the main processes used for their production(i.e.,physical,chemical,and biological methods),coupled with a discussion of the advantages and disadvantages of these methods.Highlights of the biological activities of MAO and their potential applications in food,nutraceutical,and pharmaceuticals would also be discussed and summarized.展开更多
Three different preparation methods including steam physical activation, catalytic carbonation and KOH chemical activation methods were used to prepare municipal solid waste- based carbon materials. The methylene blue...Three different preparation methods including steam physical activation, catalytic carbonation and KOH chemical activation methods were used to prepare municipal solid waste- based carbon materials. The methylene blue (MB) adsorption value was applied to evaluate the adsorption capabilities of the prepared carbon materials. The effects of preparation methods on adsorption capability and yield of products were investigated. The yield of carbon materials with the catalytic carbonation method is the highest, and the KOH activation method is the second level. Considering the adsorption performance, the KOH activation method is much more favorable. Among the different components of municipal solid waste-based carbon materials, the adsorption properties of the single component of paperboard, the double components of tire and paperboard, the triple components of tire, paperboard and polyvinyl chloride (PVC), and the multi-component mixtures are better than those of other single-, double-, triple- and multi-component mixtures, respectively.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
The novel nickel-based catalysts with a nickel content of 12 wt% were prepared with the zirconia-alumina composite as the supports. The new carriers, ZrO2 improved alumina, were synthesized by three methods, i.e., imp...The novel nickel-based catalysts with a nickel content of 12 wt% were prepared with the zirconia-alumina composite as the supports. The new carriers, ZrO2 improved alumina, were synthesized by three methods, i.e., impregnation-precipitation, co-precipitation, and impregnation method. The catalytic properties of these catalysts were investigated in the methanation of carbon dioxide, and the samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) techniques. The new catalysts showed higher catalytic activity and better stability than Ni/γ-Al2O3. Furthermore, as a support for new nickel catalyst, the ZrO2-Al2O3 composite prepared by the impregnation-precipitation method was more efficient than the other supports in the methanation of carbon dioxide. The highly dispersed zirconium oxide on the surface of γ-Al2O3 inhibited the formation of nickel aluminate-like phase, which was responsible for the better dispersion of Ni species and easier reduction of NiO species, leading to the enhanced catalytic performance of corresponding catalyst.展开更多
A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(...A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te...展开更多
Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been inves...Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been investigated and CuO-CeO2 catalysts are characterized using BET, XPS, XRD, UV Raman, and TPR techniques. The results show that the catalysts prepared by coprecipitation have smaller particle sizes, well-dispersed CuOx species, more oxygen vacancies, and are more active in the PROX than those prepared by the other methods. However. the inverse coprecipitation depresses the catalytic performance of CuO-CeO2 catalysts and causes the growth of CuO-CeO2 because of different pH value in the precipitation process.展开更多
Bi 2O 3 nanoparticles were prepared by means of ammonia precipitation, polyol mediated methods and microemulsion chemical method. The structure and properties of the as-prepared nanoparticles, having been submitted to...Bi 2O 3 nanoparticles were prepared by means of ammonia precipitation, polyol mediated methods and microemulsion chemical method. The structure and properties of the as-prepared nanoparticles, having been submitted to a heat-treatment test at 750 ℃, were characterized by means of XRD, BET, XPS and UV-Vis absorption techniques. The photocatalytic oxidation reactions of benzene, toluene and xylene were used as the model reaction to measure the photocatalytic activity of Bi 2O 3 nanoparticles, respectively. The results show that the crystallite size of Bi 2O 3 prepared with different methods and calcined at 750 ℃ were 50.6, 38.5 and 31.5 nm, respectively. The photocatalytic activity of Bi 2O 3 nanoparticles prepared with the microemulsion chemical method was higher than that of the particles prepared with the polyol mediated method; and that of the particles prepared with the micromulsion chemical method was the highest among the three. The degradation rates of the three pollutants xylene, toluene and benzene decreased in sequence.展开更多
In this work,NiMo catalysts with various contents of MoO_(3)were prepared through incipient wetness impregnation by a twostep method(NMxA)and onepot method(NMxB).The catalysts were then characterized by XRD,XPS,NH3TPD...In this work,NiMo catalysts with various contents of MoO_(3)were prepared through incipient wetness impregnation by a twostep method(NMxA)and onepot method(NMxB).The catalysts were then characterized by XRD,XPS,NH3TPD,H_(2)TPR,HRTEM,and N_(2)adsorptiondesorption technologies.The performance of the NiMo/Al_(2)O_(3) catalysts was investigated by hydrocracking lowtemperature coal tar.When the MoO3 content was 15 wt%,the interaction between Ni species and Al_(2)O_(3) on the NM15B catalyst was stronger than that on the NM15A catalyst,resulting in the poor performance of the former.When the MoO^(3) content was 20 wt%,MoO_(3) agglomerated on the surface of the NM20A catalyst,leading to decreased number of active sites and specific surface area and reduced catalytic performance.The increase in the number of MoS_(2) stack layers strengthened the interaction between Ni and Mo species of the NM20B catalyst and consequently improved its catalytic performance.When the MoO_(3) content reached 25 wt%,the active metals agglomerated on the surface of the NiMo catalysts,thereby directly decreasing the number of active sites.In conclusion,the twostep method is suitable for preparing catalysts with large pore diameter and low MoO_(3) content loading,and the onepot method is more appropriate for preparing catalysts with large specific surface area and high MoO_(3) content.Moreover,the NMxA catalysts had larger average pore diameter than the NMxB catalysts and exhibited improved desulfurization performance.展开更多
Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively....Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.展开更多
Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle ...Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle sizes were characterized by XRD, BET and TEM, respectively. Furthermore, their catalytic activities for the hydrogen iodide (HI) decomposition were evaluated in a fixed bed reactor. The results show that the catalyst 5%Pt/Al2O3 prepared by the electroless plating has the optimum catalytic properties for HI decomposition owing to the high dispersion of the platinum nano-particles (〈5 nm) on the alumina supports.展开更多
In recent years,smart textiles have attracted the attention of scholars from all walks of life,but there is an imbalance between functionality and usability,which affects their marketization process.Firstly,five repre...In recent years,smart textiles have attracted the attention of scholars from all walks of life,but there is an imbalance between functionality and usability,which affects their marketization process.Firstly,five representative smart textiles are introduced and their respective wearability is described around preparation methods.Secondly,it is concluded that the preparation methods of smart textiles can be divided into two categories:fiber methods and finishing methods.The fiber methods refer to making smart fibers into smart textiles.Textiles made by fiber methods are breathable and feel good in the hand,but the mechanical properties are influenced by the production equipment,and the process cost is high.The finishing methods refer to the functional finishing of ordinary textiles.Although the finishing method is simple and convenient,it may reduce the comfort of the textile.Finally,applications and new research in various fields of smart textiles are presented with promising prospects.It is anticipated that this review will serve as a theoretical basis for future research and development of smart textiles.Researchers are expected to create new technologies to overcome the tension between functionality and usability,as well as to increase user comfort and convenience.展开更多
Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly pres...Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly presents the influence of several different preparation methods of Ti-based hydrogen storage alloys on the hydrogen storage performance including traditional preparation methods (smelting, rapid quenching and mechanical alloying) and novel methods by plastic deformation (cold rolling, equal channel angular pressing and high-pressure torsion). The microstructure analysis and hydrogen storage properties of Ti-based alloy are summarized thoroughly corresponding with the preparation processes mentioned above. It was found that slight introduction of lattice defects including dislocation, grain boundary, sub-grain boundary and cracks by severe plastic deformation (SPD) was beneficial to improve the hydriding/dehydriding kinetic characteristic. However, the nonuniform composition and residual stress of the alloy may be caused by SPD, which is not conducive to the improvement of hydrogen storage capacity. In the future, it would be expected that new methods and technologies combined with dopant and modification are applied to Ti-based hydrogen storage alloys to make breakthroughs in practical application.展开更多
Edge preparation can remove cutting edge defects,such as burrs,chippings,and grinding marks,generated in the grinding process and improve the cutting performance and service life of tools.Various edge preparation meth...Edge preparation can remove cutting edge defects,such as burrs,chippings,and grinding marks,generated in the grinding process and improve the cutting performance and service life of tools.Various edge preparation methods have been proposed for different tool matrix materials,geometries,and application requirements.This study presents a scientific and systematic review of the development of tool edge preparation technology and provides ideas for its future development.First,typical edge characterization methods,which associate the microgeometric characteristics of the cutting edge with cutting performance,are briefly introduced.Then,edge preparation methods for cutting tools,in which materials at the cutting edge area are removed to decrease defects and obtain a suitable microgeometry of the cutting edge for machining,are discussed.New edge preparation methods are explored on the basis of existing processing technologies,and the principles,advantages,and limitations of these methods are systematically summarized and analyzed.Edge preparation methods are classified into two categories:mechanical processing methods and nontraditional processing methods.These methods are compared from the aspects of edge consistency,surface quality,efficiency,processing difficulty,machining cost,and general availability.In this manner,a more intuitive understanding of the characteristics can be gained.Finally,the future development direction of tool edge preparation technology is prospected.展开更多
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio...Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.展开更多
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare...A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Because ice-high foundation soil is widely distributed in permafrost regions,the correct preparation of ice-high specimens is of critical interest in engineering design for foundation stability.Past research has shown...Because ice-high foundation soil is widely distributed in permafrost regions,the correct preparation of ice-high specimens is of critical interest in engineering design for foundation stability.Past research has shown that the uniaxial compression strength of ice-high frozen soils changes as the ice or total water content increases; the differences of different methods of specimen preparation are analyzed here and the advantages and disadvantages of them are presented.It is confirmed that the role of crushed ice is significantly different from that of naturally frozen ice in frozen soils,and the size and amount of crushed ice will influence the strength and deformation mechanism of frozen soils.Therefore,it is strongly recommended that when a ice-high specimen is artificially prepared,the ice should be frozen through natural means and not be replaced with crushed ice.展开更多
Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-seali...Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-sealing processes are critical for the borehole-sealing efect.Nanosized magnesia expansive agents are used to improve the expansibilities of cement pastes and improve the borehole-sealing efect.Nuclear magnetic resonance spectrometry and scanning electron microscopy were adopted to study the efects of nanosized magnesia on the hydration of borehole-sealing cements used with diferent preparation methods.The results showed that an increase in the mass fraction of the nanosized magnesia promoted cement hydration,and the mass fraction was positively correlated with the promotion efect.The use of diferent preparation methods did not change the water-phase distribution in the cement.When using the wet-mixing preparation method,nanosized magnesia promoted the induction,acceleration,and deceleration periods of hydration;when using the dry-mixing preparation method,the nanosized magnesia promoted the induction period of cement hydration,and the promotion efect was less obvious than that seen when using the wet-mixing method.When using the wet-mixing preparation method,the nanosized magnesia was uniformly dispersed,thus enlarging the surface area of the reaction,which provided more nucleation sites for the hydration products of the cement and therefore accelerated the hydration reaction.When using the dry-mixing preparation method,the nanosized magnesia powders were dispersed nonuniformly and aggregated.Under these conditions,only a few nanosized magnesia particles on the surfaces of the aggregated clusters took part in hydration,so only a small number of nucleation sites were provided for the hydration products of cement.This led to inconsistent hydration of cement pastes prepared using the dry-mixing method.The surface porosity of the cement prepared with the wet-mixing preparation method frst decreased and then increased with increases in the mass fraction of the nanosized magnesia.The cement surface exhibited compact hydration products and few pores,and the surface was relatively smooth.In comparison,the surface porosity of the cement prepared using the dry-mixing method fuctuated with increasing mass fraction of the nanosized magnesia,resulting in a rough cement surface and microfractures on some surfaces.The two preparation methods both reduced the surface porosity of the cement.The wet-mixing preparation was more efective and consistent in improving the compactness of the cement than the dry-mixing preparation.These results provide important guidance on the addition of nanosized magnesia in borehole-sealing engineering and the selection of cement preparation methods,and they also lay a solid foundation for realizing safe and efcient gas drainage.展开更多
Although literature abounds with examples of formation of perhaloalkanes by photo-lytic or Lewis-acid induced halogen exchange reactions involving radical or carbocationintermediates,the procedures are seldom applicab...Although literature abounds with examples of formation of perhaloalkanes by photo-lytic or Lewis-acid induced halogen exchange reactions involving radical or carbocationintermediates,the procedures are seldom applicable to the preparation of perhaloalkanes ingood yields under mild conditions.Recently,we have reported the spontaneous reactionsof some perhalofluoroalkanes with various types of nucleophiles.All these reactions areinitiated by the halophilic attack of nucleophiles on C—Br or C—Cl bonds,followed byanionic chain steps involving carbanion as well as olefin intermediates.Notably,the latter areformed after the β-elimination of a good leaving group from the former.On the other hand,it is well known that halogenated carbanions can effectively make halophilic attacks on theC—X bonds of other halogenated substrates,e.g.,in the“halogen dance”of Bunnett.There-展开更多
基金financially supported by grants from the National Natural Science Foundation of China(31901692)2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant(2020LKSFG02E)Natural Science Foundation of Guangdong Province,China(2021A1515011495)。
文摘Marine algae are valuable sources of health-promoting molecules that have been consumed by Asians for decades.Among aquatic flora,marine algae stand out in terms of high content of marine algae polysaccharides(MAP)such as carrageenan,alginate,fucoidan,laminaran,agarose,rhamnan,and ulvan.When hydrolyzed,MAP generate marine algae oligosaccharides(MAO),which have attracted interest in recent years due to their superior solubility compared with MAP.Besides,MAO have been demonstrated numerous biological activities including antioxidant,antidiabetic,anti-inflammatory,antimicrobial,and prebiotic activities.Thus,this review summarizes the main chemical classes of MAO,their sources,and the main processes used for their production(i.e.,physical,chemical,and biological methods),coupled with a discussion of the advantages and disadvantages of these methods.Highlights of the biological activities of MAO and their potential applications in food,nutraceutical,and pharmaceuticals would also be discussed and summarized.
基金The National Natural Science Foundation of China(No.51576048)the Environmental Protection Subject Foundation of Jiangsu Province(No.2015013)+3 种基金the Industry,Education and Research Prospective Project of Jiangsu Province(No.BY2015060-04)the Fok Ying Tong Education Foundation(No.142026)the Fundamental Research Funds for the Central UniversitiesProgram for New Century Excellent Talents in University(No.NCET-12-0118)
文摘Three different preparation methods including steam physical activation, catalytic carbonation and KOH chemical activation methods were used to prepare municipal solid waste- based carbon materials. The methylene blue (MB) adsorption value was applied to evaluate the adsorption capabilities of the prepared carbon materials. The effects of preparation methods on adsorption capability and yield of products were investigated. The yield of carbon materials with the catalytic carbonation method is the highest, and the KOH activation method is the second level. Considering the adsorption performance, the KOH activation method is much more favorable. Among the different components of municipal solid waste-based carbon materials, the adsorption properties of the single component of paperboard, the double components of tire and paperboard, the triple components of tire, paperboard and polyvinyl chloride (PVC), and the multi-component mixtures are better than those of other single-, double-, triple- and multi-component mixtures, respectively.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
基金supported by the Southwest Research & Design Institute of Chemical Industy (SKLIV GR-22010-01)the National Basic Research Program of China (973 Program, 2011CB201202) of Ministry of Science and Technology
文摘The novel nickel-based catalysts with a nickel content of 12 wt% were prepared with the zirconia-alumina composite as the supports. The new carriers, ZrO2 improved alumina, were synthesized by three methods, i.e., impregnation-precipitation, co-precipitation, and impregnation method. The catalytic properties of these catalysts were investigated in the methanation of carbon dioxide, and the samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD) techniques. The new catalysts showed higher catalytic activity and better stability than Ni/γ-Al2O3. Furthermore, as a support for new nickel catalyst, the ZrO2-Al2O3 composite prepared by the impregnation-precipitation method was more efficient than the other supports in the methanation of carbon dioxide. The highly dispersed zirconium oxide on the surface of γ-Al2O3 inhibited the formation of nickel aluminate-like phase, which was responsible for the better dispersion of Ni species and easier reduction of NiO species, leading to the enhanced catalytic performance of corresponding catalyst.
基金supported by the Ministry of Science and Technology of Beijing (20081D0500500142)
文摘A different method was employed for the preparation of a metal supported perovskite catalyst for the catalytic combustion of methane.The prepared metallic catalysts were characterized by means of X-ray diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and also by ultrasonic and thermal shock tests and catalytic activity.It was found that the process factors during the preparation,e.g.the preparation of the catalyst precursor and the coating slurry,the calcination te...
文摘Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been investigated and CuO-CeO2 catalysts are characterized using BET, XPS, XRD, UV Raman, and TPR techniques. The results show that the catalysts prepared by coprecipitation have smaller particle sizes, well-dispersed CuOx species, more oxygen vacancies, and are more active in the PROX than those prepared by the other methods. However. the inverse coprecipitation depresses the catalytic performance of CuO-CeO2 catalysts and causes the growth of CuO-CeO2 because of different pH value in the precipitation process.
基金the National Natural Science Foundation of China(No.2 0 2 770 15 )
文摘Bi 2O 3 nanoparticles were prepared by means of ammonia precipitation, polyol mediated methods and microemulsion chemical method. The structure and properties of the as-prepared nanoparticles, having been submitted to a heat-treatment test at 750 ℃, were characterized by means of XRD, BET, XPS and UV-Vis absorption techniques. The photocatalytic oxidation reactions of benzene, toluene and xylene were used as the model reaction to measure the photocatalytic activity of Bi 2O 3 nanoparticles, respectively. The results show that the crystallite size of Bi 2O 3 prepared with different methods and calcined at 750 ℃ were 50.6, 38.5 and 31.5 nm, respectively. The photocatalytic activity of Bi 2O 3 nanoparticles prepared with the microemulsion chemical method was higher than that of the particles prepared with the polyol mediated method; and that of the particles prepared with the micromulsion chemical method was the highest among the three. The degradation rates of the three pollutants xylene, toluene and benzene decreased in sequence.
基金Financial support from the National Natural Science Foundation of China (21968034) is gratefully acknowledged.
文摘In this work,NiMo catalysts with various contents of MoO_(3)were prepared through incipient wetness impregnation by a twostep method(NMxA)and onepot method(NMxB).The catalysts were then characterized by XRD,XPS,NH3TPD,H_(2)TPR,HRTEM,and N_(2)adsorptiondesorption technologies.The performance of the NiMo/Al_(2)O_(3) catalysts was investigated by hydrocracking lowtemperature coal tar.When the MoO3 content was 15 wt%,the interaction between Ni species and Al_(2)O_(3) on the NM15B catalyst was stronger than that on the NM15A catalyst,resulting in the poor performance of the former.When the MoO^(3) content was 20 wt%,MoO_(3) agglomerated on the surface of the NM20A catalyst,leading to decreased number of active sites and specific surface area and reduced catalytic performance.The increase in the number of MoS_(2) stack layers strengthened the interaction between Ni and Mo species of the NM20B catalyst and consequently improved its catalytic performance.When the MoO_(3) content reached 25 wt%,the active metals agglomerated on the surface of the NiMo catalysts,thereby directly decreasing the number of active sites.In conclusion,the twostep method is suitable for preparing catalysts with large pore diameter and low MoO_(3) content loading,and the onepot method is more appropriate for preparing catalysts with large specific surface area and high MoO_(3) content.Moreover,the NMxA catalysts had larger average pore diameter than the NMxB catalysts and exhibited improved desulfurization performance.
基金Supports by the National Natural Science Foundation of China(21666030,21366025)National First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
文摘Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.
基金the Foundational Research Project of National Defence(No.A1420080145)for thefinancial support.
文摘Three kinds of Pt/alumina catalysts were prepared by impregnation-hydrogen reduction, impregnation-hydrazine reduction and electroless plating methods. Their differences in the structures, specific areas and particle sizes were characterized by XRD, BET and TEM, respectively. Furthermore, their catalytic activities for the hydrogen iodide (HI) decomposition were evaluated in a fixed bed reactor. The results show that the catalyst 5%Pt/Al2O3 prepared by the electroless plating has the optimum catalytic properties for HI decomposition owing to the high dispersion of the platinum nano-particles (〈5 nm) on the alumina supports.
基金Innovation Team Building Program of Beijing Institute of Fashion Technology,China。
文摘In recent years,smart textiles have attracted the attention of scholars from all walks of life,but there is an imbalance between functionality and usability,which affects their marketization process.Firstly,five representative smart textiles are introduced and their respective wearability is described around preparation methods.Secondly,it is concluded that the preparation methods of smart textiles can be divided into two categories:fiber methods and finishing methods.The fiber methods refer to making smart fibers into smart textiles.Textiles made by fiber methods are breathable and feel good in the hand,but the mechanical properties are influenced by the production equipment,and the process cost is high.The finishing methods refer to the functional finishing of ordinary textiles.Although the finishing method is simple and convenient,it may reduce the comfort of the textile.Finally,applications and new research in various fields of smart textiles are presented with promising prospects.It is anticipated that this review will serve as a theoretical basis for future research and development of smart textiles.Researchers are expected to create new technologies to overcome the tension between functionality and usability,as well as to increase user comfort and convenience.
文摘Ti-based hydrogen storage alloy is one of the most common solid-state hydrogen storage materials due to its high hydrogen absorption capacity, low dehydrogenation temperature and rich resources. This paper mainly presents the influence of several different preparation methods of Ti-based hydrogen storage alloys on the hydrogen storage performance including traditional preparation methods (smelting, rapid quenching and mechanical alloying) and novel methods by plastic deformation (cold rolling, equal channel angular pressing and high-pressure torsion). The microstructure analysis and hydrogen storage properties of Ti-based alloy are summarized thoroughly corresponding with the preparation processes mentioned above. It was found that slight introduction of lattice defects including dislocation, grain boundary, sub-grain boundary and cracks by severe plastic deformation (SPD) was beneficial to improve the hydriding/dehydriding kinetic characteristic. However, the nonuniform composition and residual stress of the alloy may be caused by SPD, which is not conducive to the improvement of hydrogen storage capacity. In the future, it would be expected that new methods and technologies combined with dopant and modification are applied to Ti-based hydrogen storage alloys to make breakthroughs in practical application.
基金the National Natural Science Foundation of China(Grant No.52175441).
文摘Edge preparation can remove cutting edge defects,such as burrs,chippings,and grinding marks,generated in the grinding process and improve the cutting performance and service life of tools.Various edge preparation methods have been proposed for different tool matrix materials,geometries,and application requirements.This study presents a scientific and systematic review of the development of tool edge preparation technology and provides ideas for its future development.First,typical edge characterization methods,which associate the microgeometric characteristics of the cutting edge with cutting performance,are briefly introduced.Then,edge preparation methods for cutting tools,in which materials at the cutting edge area are removed to decrease defects and obtain a suitable microgeometry of the cutting edge for machining,are discussed.New edge preparation methods are explored on the basis of existing processing technologies,and the principles,advantages,and limitations of these methods are systematically summarized and analyzed.Edge preparation methods are classified into two categories:mechanical processing methods and nontraditional processing methods.These methods are compared from the aspects of edge consistency,surface quality,efficiency,processing difficulty,machining cost,and general availability.In this manner,a more intuitive understanding of the characteristics can be gained.Finally,the future development direction of tool edge preparation technology is prospected.
文摘Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.
基金financially supported from the National Natural Science Foundation of China(No.U23A20605)the University Synergy Innovation Program of Anhui Province,China(No.GXXT-2020-072)+2 种基金Anhui Jieqing Project,China(No.2208085J19)Anhui Graduate Innovation and Entrepreneurship Practice Project,China(No.2022cxcysj090)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202202).
文摘A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金supported by the Excellent National Key Laboratory Special Fund of China (No.41023003)the National Natural Science Foundation of China (No.41101068)+1 种基金the National Key Basic Research Program of China (973 Program) (No.2012CB026102)the project of the State Key Laboratory of Frozen Soil Engineering (No.SKLFSE-ZT-07)
文摘Because ice-high foundation soil is widely distributed in permafrost regions,the correct preparation of ice-high specimens is of critical interest in engineering design for foundation stability.Past research has shown that the uniaxial compression strength of ice-high frozen soils changes as the ice or total water content increases; the differences of different methods of specimen preparation are analyzed here and the advantages and disadvantages of them are presented.It is confirmed that the role of crushed ice is significantly different from that of naturally frozen ice in frozen soils,and the size and amount of crushed ice will influence the strength and deformation mechanism of frozen soils.Therefore,it is strongly recommended that when a ice-high specimen is artificially prepared,the ice should be frozen through natural means and not be replaced with crushed ice.
基金supported by“Overall Rationing System”Project of Chongqing Talent Program(cstc2022ycjh-bgzxm0077)the National Natural Science Foundation of China(52074041)+1 种基金Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0836)Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ-002),which are gratefully acknowledged.
文摘Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-sealing processes are critical for the borehole-sealing efect.Nanosized magnesia expansive agents are used to improve the expansibilities of cement pastes and improve the borehole-sealing efect.Nuclear magnetic resonance spectrometry and scanning electron microscopy were adopted to study the efects of nanosized magnesia on the hydration of borehole-sealing cements used with diferent preparation methods.The results showed that an increase in the mass fraction of the nanosized magnesia promoted cement hydration,and the mass fraction was positively correlated with the promotion efect.The use of diferent preparation methods did not change the water-phase distribution in the cement.When using the wet-mixing preparation method,nanosized magnesia promoted the induction,acceleration,and deceleration periods of hydration;when using the dry-mixing preparation method,the nanosized magnesia promoted the induction period of cement hydration,and the promotion efect was less obvious than that seen when using the wet-mixing method.When using the wet-mixing preparation method,the nanosized magnesia was uniformly dispersed,thus enlarging the surface area of the reaction,which provided more nucleation sites for the hydration products of the cement and therefore accelerated the hydration reaction.When using the dry-mixing preparation method,the nanosized magnesia powders were dispersed nonuniformly and aggregated.Under these conditions,only a few nanosized magnesia particles on the surfaces of the aggregated clusters took part in hydration,so only a small number of nucleation sites were provided for the hydration products of cement.This led to inconsistent hydration of cement pastes prepared using the dry-mixing method.The surface porosity of the cement prepared with the wet-mixing preparation method frst decreased and then increased with increases in the mass fraction of the nanosized magnesia.The cement surface exhibited compact hydration products and few pores,and the surface was relatively smooth.In comparison,the surface porosity of the cement prepared using the dry-mixing method fuctuated with increasing mass fraction of the nanosized magnesia,resulting in a rough cement surface and microfractures on some surfaces.The two preparation methods both reduced the surface porosity of the cement.The wet-mixing preparation was more efective and consistent in improving the compactness of the cement than the dry-mixing preparation.These results provide important guidance on the addition of nanosized magnesia in borehole-sealing engineering and the selection of cement preparation methods,and they also lay a solid foundation for realizing safe and efcient gas drainage.
基金the National Natural Science Foundation of China.
文摘Although literature abounds with examples of formation of perhaloalkanes by photo-lytic or Lewis-acid induced halogen exchange reactions involving radical or carbocationintermediates,the procedures are seldom applicable to the preparation of perhaloalkanes ingood yields under mild conditions.Recently,we have reported the spontaneous reactionsof some perhalofluoroalkanes with various types of nucleophiles.All these reactions areinitiated by the halophilic attack of nucleophiles on C—Br or C—Cl bonds,followed byanionic chain steps involving carbanion as well as olefin intermediates.Notably,the latter areformed after the β-elimination of a good leaving group from the former.On the other hand,it is well known that halogenated carbanions can effectively make halophilic attacks on theC—X bonds of other halogenated substrates,e.g.,in the“halogen dance”of Bunnett.There-