Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlation...Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlations between clad geometry and dilution(clad characteristics)and the main process parameters laser power(P_(l)),cladding speed(v_(c)),the powder feed rate(m)were obtained through application of variance analysis technique(ANOVA).The obtained correlations between the main processing parameters and the clad characteristics are discussed and a statistical model was developed.The desirability investigations using the developed statistical model were performed by considering the clad geometry,aspect ratio,dilution and hardness.Optimal parameters for cladding Stellite 6 on AISI 420 steel substrate and for cladding Nucalloy 488V on S355 J2 steel substrate were obtained.The optimal processing parameters can be applied to clad other materials with similar chemical compositions.展开更多
Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. ...Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. Herein, the recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation was conducted; process optimization was carried out, and the corresponding mineralogy was investigated. The reduction time, reduction temperature, reducing agent (coal), calcium chloride additive, grinding time, and magnetic field intensity were examined for process optimization. Mineralogical analyses of the sample, reduced pellets, and magnetic concentrate under various conditions were performed by X-ray diffraction, optical microscopy, and scanning electron microscopy-energy-dispersive X-ray spectrometry to elucidate the iron reduction and growth mechanisms. The results indicated that the optimum parameters of iron recovery include a reduction temperature of 1150A degrees C, a reduction time of 120 min, a coal dosage of 25%, a calcium chloride dosage of 2.5%, a magnetic field intensity of 100 mT, and a grinding time of 1 min. Under these conditions, the iron grade in the magnetic concentrate was greater than 90%, with an iron recovery ratio greater than 95%.展开更多
The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pr...The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.展开更多
The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechani...The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechanism of the nucleation, the growth kinetics of dendrites and the columnar-to-equiaxed transition (CET) are considered.Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been involved quantitatively. The validity of the modeling is confirmed by selection of the optimum process variables.展开更多
In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gears is proposed according to the structural characteristics of the f...In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gears is proposed according to the structural characteristics of the face gear and material properties of 12Cr2Ni4 steel. To simulate the effect of carburizing and quenching process on tooth deformation and residual stress distribution, a heat treatment analysis model of face gears is established, and the microstructure, stress and deformation of face gear teeth changing with time are analyzed. The simulation results show that face gear tooth hardness increases, tooth surface residual compressive stress increases and tooth deformation decreases after heat treatment process optimization. It is beneficial to improving the fatigue strength and performance of face gears.展开更多
The RTS technology can produce ultra-low sulfur diesel at lower costs using available hydrogenation catalyst and device.However,with the increase of the mixing proportion of secondary processed diesel fuel in the feed...The RTS technology can produce ultra-low sulfur diesel at lower costs using available hydrogenation catalyst and device.However,with the increase of the mixing proportion of secondary processed diesel fuel in the feed,the content of nitrogen compounds and polycyclic aromatic hydrocarbons in the feed increased,leading to the acceleration of the deactivation rate of the primary catalyst and the shortening of the service cycle.In order to fully understand the reason of catalyst deactivation,the effect of mixing secondary processed diesel fuel oil on the operating stability of the catalyst in the first reactor was investigated in a medium-sized fixed-bed hydrogenation unit.The results showed that the nitrogen compounds mainly affected the initial activity of the catalyst,but had little effect on the stability of the catalyst.The PAHs had little effect on the initial activity of the catalyst,but could significantly accelerate the deactivation of the catalyst.Combined with the analysis of the reason of catalyst deactivation and the study of RTS technology,the direction of RTS technology process optimization was put forward,and the stability of catalyst was improved obviously after process optimization.展开更多
The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around th...The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around the campus. A completely randomized factorial experimental design and Duncan's multiple range tests were used to achieve the objectives. Three temperatures, i.e. 80, 90 and 100 ℃ and five frying time, i.e. 3, 6, 9, and 15 minutes with a 2 mm slice thickness were studied to determine the optimum condition and predict the moisture decrease. Results showed that the vacuum frying time in general affects the chips color and oil uptake significantly (p 〈 0.01) and correlated with the moisture decrease. The chips moisture content decline significantly after vacuum frying at 90 ℃ and 100 ℃ for 3 minutes. While for the 80 ℃ vacuum frying, the significant decrease of moisture occurred due to the increase of vacuum frying time from 3 to 6 minutes (p 〈 0.01). The optimum conditions for a 2 mm slice thickness chips making are vacuum frying at 100 ℃ for 3 minutes. The chips moisture lost followed generally a two-stage of falling rate pattern during vacuum frying, and each could be well predicted by an exponential equation (R2 = 0.99).展开更多
[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, an...[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, and influent COD concentration, in-anaerobic treatment process of citric acid wastewater on COD removal rate were studied and the COD removal rate was optimized by response surface method. [Result] There was no interaction between acidification time and the other two factors. It was showed that hydraulic retention time and influent COD concentration had significant effect on COD removal rate and there was interaction between the two factors. The optimum COD removing process conditions was as follows: acidification time 1.53 h, hydraulic retention time 3.52 h and influent COD concentration 2 698 mg/L. Under the optimized conditions, the COD removal rate was 93.31% and it was much closed to the experimental result, 93.29%. [Conclusion] Using response surface method to optimize the anaerobic treatment of citric acid wastewater can result in optimized achievement.展开更多
The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzi...The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene.展开更多
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ...The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.展开更多
Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derive...Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.展开更多
This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugos...This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugosae Flos(RF)flavonoids had potential therapeutic effects on hyperlipidemia and its mechanism of action was discussed.TCMSP and GeneCards databases were used to obtain active ingredients and disease targets.Venn diagrams were drawn to illustrate the findings.The interaction network diagram was created using Cytoscape 3.8.0 software.The PPI protein network was constructed using String.GO and KEGG enrichment analysis was performed using Metascape.The results revealed 2 active flavonoid ingredients and 60 potential targets in RF.The key targets,including CCL2,PPARG,and PPARA,were found to play a role in multiple pathways such as the AGE-RAGE signaling pathway,lipid and atherosclerosis,and cancer pathway in diabetic complications.The solvent extraction method was optimized for efficient flavonoid extraction based on network pharmacology prediction results.This was achieved through a single factor and orthogonal test,resulting in an optimum process with a reflux time of 1.5 h,a solid-liquid ratio of 1:13 g/mL,and an ethanol concentration of 50%.展开更多
This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the ...This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the predicted active components.The STRING database was used for protein interaction analysis and PPI network construction via Cytoscape 3.9.1.Pymol was employed for docking and visualization.An extensive review of SF identifi ed 6 active ingredients,297 related objectives,84 disease objectives,and 57 total objectives.After protein interaction and topology analysis,18 core targets were identified.These included 146 gene function entries(P<0.05).Active compounds,mainly flavonoids,can modulate the expression of various proteins such as TNF,IL-6,IL-1β,PPARG,and TGFB1 to achieve therapeutic effects on HLP.The network pharmacology and molecular docking results suggested that the active fl avonoids component in SF may be related to the treatment of hyperlipidemia.Therefore,the orthogonal experiment method was used to optimize the extraction process of total fl avonoid from SF using ethanol refl ux extraction,based on a single factor experiment.The effects of refl ux time,solid-liquid ratio,ethanol concentration,and other factors on the extraction of total fl avonoid from SF were investigated.The optimum process conditions were refl ux time of 1.25 h,solid-liquid ratio of 1:15 g/mL and ethanol concentration of 60%.Using these conditions,the purity of total fl avonoid extracted from SF was 70.33±0.22%.展开更多
In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and me...In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.展开更多
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o...In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.展开更多
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to...Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).展开更多
The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ...The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.展开更多
Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine h...Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine hydrochloride yield. In this study, a new purification process for sinomenine hydrochloride was proposed by using the extract obtained from acid extraction of Caulis Sinomenii as the starting material.The process included the following steps: alkalization, extraction, water washing, acid–water stripping,drying, and crystallization. 1-Heptanol was used as the extractant. The distribution coefficients of sinomenine and sinomenine hydrochloride in 1-heptanol–water system were 27.4 and 0.0167, respectively.The dissociation constants of sinomenine hydrochloride were 8.27 and 11.24, respectively. Process parameters of the new purification process were optimized with experimental design. The extractant1-heptanol and sinomenine hydrochloride in the crystallization mother solution can be recycled in the new process. The purity of the obtained sinomenine hydrochloride crystals exceeded 85%, and the yield was about 70%. Compared with current industrial processes, safer extractant, less solid waste, and higher sinomenine hydrochloride yield can be achieved using the new purification process of sinomenine hydrochloride provided in this study.展开更多
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
基金carried out under project number M72.7.09328 within the framework of the Research Program of the Materials innovation institute M2i(www.m2i.nl)。
文摘Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlations between clad geometry and dilution(clad characteristics)and the main process parameters laser power(P_(l)),cladding speed(v_(c)),the powder feed rate(m)were obtained through application of variance analysis technique(ANOVA).The obtained correlations between the main processing parameters and the clad characteristics are discussed and a statistical model was developed.The desirability investigations using the developed statistical model were performed by considering the clad geometry,aspect ratio,dilution and hardness.Optimal parameters for cladding Stellite 6 on AISI 420 steel substrate and for cladding Nucalloy 488V on S355 J2 steel substrate were obtained.The optimal processing parameters can be applied to clad other materials with similar chemical compositions.
基金financially supported by the National Natural Science Foundation of China (No. 51674026)
文摘Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. Herein, the recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation was conducted; process optimization was carried out, and the corresponding mineralogy was investigated. The reduction time, reduction temperature, reducing agent (coal), calcium chloride additive, grinding time, and magnetic field intensity were examined for process optimization. Mineralogical analyses of the sample, reduced pellets, and magnetic concentrate under various conditions were performed by X-ray diffraction, optical microscopy, and scanning electron microscopy-energy-dispersive X-ray spectrometry to elucidate the iron reduction and growth mechanisms. The results indicated that the optimum parameters of iron recovery include a reduction temperature of 1150A degrees C, a reduction time of 120 min, a coal dosage of 25%, a calcium chloride dosage of 2.5%, a magnetic field intensity of 100 mT, and a grinding time of 1 min. Under these conditions, the iron grade in the magnetic concentrate was greater than 90%, with an iron recovery ratio greater than 95%.
文摘The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects.
文摘The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechanism of the nucleation, the growth kinetics of dendrites and the columnar-to-equiaxed transition (CET) are considered.Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been involved quantitatively. The validity of the modeling is confirmed by selection of the optimum process variables.
基金Funded by Key Project of Advanced Research Foundation(No.9140A18020113xx)Advanced Research Foundation Project(No.9140A18020212xx)Advanced Research Projects(Nos.5131802xx and 5131812xx)
文摘In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gears is proposed according to the structural characteristics of the face gear and material properties of 12Cr2Ni4 steel. To simulate the effect of carburizing and quenching process on tooth deformation and residual stress distribution, a heat treatment analysis model of face gears is established, and the microstructure, stress and deformation of face gear teeth changing with time are analyzed. The simulation results show that face gear tooth hardness increases, tooth surface residual compressive stress increases and tooth deformation decreases after heat treatment process optimization. It is beneficial to improving the fatigue strength and performance of face gears.
基金This work was financially supported by the Technology Development Project of SINOPEC(121025)All of the staff in our laboratory had provided a lot of support in the analysis of oil samples and catalyst characterization.
文摘The RTS technology can produce ultra-low sulfur diesel at lower costs using available hydrogenation catalyst and device.However,with the increase of the mixing proportion of secondary processed diesel fuel in the feed,the content of nitrogen compounds and polycyclic aromatic hydrocarbons in the feed increased,leading to the acceleration of the deactivation rate of the primary catalyst and the shortening of the service cycle.In order to fully understand the reason of catalyst deactivation,the effect of mixing secondary processed diesel fuel oil on the operating stability of the catalyst in the first reactor was investigated in a medium-sized fixed-bed hydrogenation unit.The results showed that the nitrogen compounds mainly affected the initial activity of the catalyst,but had little effect on the stability of the catalyst.The PAHs had little effect on the initial activity of the catalyst,but could significantly accelerate the deactivation of the catalyst.Combined with the analysis of the reason of catalyst deactivation and the study of RTS technology,the direction of RTS technology process optimization was put forward,and the stability of catalyst was improved obviously after process optimization.
文摘The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around the campus. A completely randomized factorial experimental design and Duncan's multiple range tests were used to achieve the objectives. Three temperatures, i.e. 80, 90 and 100 ℃ and five frying time, i.e. 3, 6, 9, and 15 minutes with a 2 mm slice thickness were studied to determine the optimum condition and predict the moisture decrease. Results showed that the vacuum frying time in general affects the chips color and oil uptake significantly (p 〈 0.01) and correlated with the moisture decrease. The chips moisture content decline significantly after vacuum frying at 90 ℃ and 100 ℃ for 3 minutes. While for the 80 ℃ vacuum frying, the significant decrease of moisture occurred due to the increase of vacuum frying time from 3 to 6 minutes (p 〈 0.01). The optimum conditions for a 2 mm slice thickness chips making are vacuum frying at 100 ℃ for 3 minutes. The chips moisture lost followed generally a two-stage of falling rate pattern during vacuum frying, and each could be well predicted by an exponential equation (R2 = 0.99).
文摘[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, and influent COD concentration, in-anaerobic treatment process of citric acid wastewater on COD removal rate were studied and the COD removal rate was optimized by response surface method. [Result] There was no interaction between acidification time and the other two factors. It was showed that hydraulic retention time and influent COD concentration had significant effect on COD removal rate and there was interaction between the two factors. The optimum COD removing process conditions was as follows: acidification time 1.53 h, hydraulic retention time 3.52 h and influent COD concentration 2 698 mg/L. Under the optimized conditions, the COD removal rate was 93.31% and it was much closed to the experimental result, 93.29%. [Conclusion] Using response surface method to optimize the anaerobic treatment of citric acid wastewater can result in optimized achievement.
文摘The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene.
基金supported by the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)the Fundamental Research Funds for the Central Universities(226-2022-00226).
文摘The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.
文摘Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.
文摘This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugosae Flos(RF)flavonoids had potential therapeutic effects on hyperlipidemia and its mechanism of action was discussed.TCMSP and GeneCards databases were used to obtain active ingredients and disease targets.Venn diagrams were drawn to illustrate the findings.The interaction network diagram was created using Cytoscape 3.8.0 software.The PPI protein network was constructed using String.GO and KEGG enrichment analysis was performed using Metascape.The results revealed 2 active flavonoid ingredients and 60 potential targets in RF.The key targets,including CCL2,PPARG,and PPARA,were found to play a role in multiple pathways such as the AGE-RAGE signaling pathway,lipid and atherosclerosis,and cancer pathway in diabetic complications.The solvent extraction method was optimized for efficient flavonoid extraction based on network pharmacology prediction results.This was achieved through a single factor and orthogonal test,resulting in an optimum process with a reflux time of 1.5 h,a solid-liquid ratio of 1:13 g/mL,and an ethanol concentration of 50%.
文摘This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the predicted active components.The STRING database was used for protein interaction analysis and PPI network construction via Cytoscape 3.9.1.Pymol was employed for docking and visualization.An extensive review of SF identifi ed 6 active ingredients,297 related objectives,84 disease objectives,and 57 total objectives.After protein interaction and topology analysis,18 core targets were identified.These included 146 gene function entries(P<0.05).Active compounds,mainly flavonoids,can modulate the expression of various proteins such as TNF,IL-6,IL-1β,PPARG,and TGFB1 to achieve therapeutic effects on HLP.The network pharmacology and molecular docking results suggested that the active fl avonoids component in SF may be related to the treatment of hyperlipidemia.Therefore,the orthogonal experiment method was used to optimize the extraction process of total fl avonoid from SF using ethanol refl ux extraction,based on a single factor experiment.The effects of refl ux time,solid-liquid ratio,ethanol concentration,and other factors on the extraction of total fl avonoid from SF were investigated.The optimum process conditions were refl ux time of 1.25 h,solid-liquid ratio of 1:15 g/mL and ethanol concentration of 60%.Using these conditions,the purity of total fl avonoid extracted from SF was 70.33±0.22%.
基金supported by Priority Academic Program Development of Jiangsu Higher Educatior(PPZY2015A044).
文摘In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.
基金Funded by the National Natural Science Foundation of China(No.51975540)。
文摘In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate.
文摘Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).
文摘The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.
基金supported by the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (ZYYCXTD-D-202002)the National Project for Standardization of Chinese Materia Medica (ZYBZH-C-GD-04)。
文摘Sinomenine hydrochloride is generally produced from Caulis Sinomenii. At present, the purification process in industrial production suffers from large amount of solid waste, high solvent toxicity, and low sinomenine hydrochloride yield. In this study, a new purification process for sinomenine hydrochloride was proposed by using the extract obtained from acid extraction of Caulis Sinomenii as the starting material.The process included the following steps: alkalization, extraction, water washing, acid–water stripping,drying, and crystallization. 1-Heptanol was used as the extractant. The distribution coefficients of sinomenine and sinomenine hydrochloride in 1-heptanol–water system were 27.4 and 0.0167, respectively.The dissociation constants of sinomenine hydrochloride were 8.27 and 11.24, respectively. Process parameters of the new purification process were optimized with experimental design. The extractant1-heptanol and sinomenine hydrochloride in the crystallization mother solution can be recycled in the new process. The purity of the obtained sinomenine hydrochloride crystals exceeded 85%, and the yield was about 70%. Compared with current industrial processes, safer extractant, less solid waste, and higher sinomenine hydrochloride yield can be achieved using the new purification process of sinomenine hydrochloride provided in this study.