期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Thiourea crystal growth kinetics,mechanism and process optimization during cooling crystallization
1
作者 Zhongxiang Ding Wei Song +2 位作者 Tong Zhou Weihua Cui Changsong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期62-69,共8页
In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and me... In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process. 展开更多
关键词 THIOUREA CRYSTALLIZATION Growth kinetics process optimization DIFFUSION Surface reaction
下载PDF
Advancements in machine learning for material design and process optimization in the field of additive manufacturing
2
作者 Hao-ran Zhou Hao Yang +8 位作者 Huai-qian Li Ying-chun Ma Sen Yu Jian shi Jing-chang Cheng Peng Gao Bo Yu Zhi-quan Miao Yan-peng Wei 《China Foundry》 SCIE EI CAS CSCD 2024年第2期101-115,共15页
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co... Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing. 展开更多
关键词 additive manufacturing machine learning material design process optimization intersection of disciplines embedded machine learning
下载PDF
Cookie Baking Process Optimization and Quality Analysis Based on Food 3D Printing
3
作者 Liu Chenghai Li Jingyi +2 位作者 Wu Chunsheng Zhao Xinglong Zheng Xianzhe 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期61-73,共13页
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in... In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology. 展开更多
关键词 food 3D printing baking process COOKIE quality analysis optimization of process parameter
下载PDF
From statistical analysis to process optimization during cladding using a Nd:YAG laser 被引量:5
4
作者 Ya Wei Pathiraj B. Yu Xinghua 《China Welding》 CAS 2022年第4期7-22,共16页
Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlation... Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlations between clad geometry and dilution(clad characteristics)and the main process parameters laser power(P_(l)),cladding speed(v_(c)),the powder feed rate(m)were obtained through application of variance analysis technique(ANOVA).The obtained correlations between the main processing parameters and the clad characteristics are discussed and a statistical model was developed.The desirability investigations using the developed statistical model were performed by considering the clad geometry,aspect ratio,dilution and hardness.Optimal parameters for cladding Stellite 6 on AISI 420 steel substrate and for cladding Nucalloy 488V on S355 J2 steel substrate were obtained.The optimal processing parameters can be applied to clad other materials with similar chemical compositions. 展开更多
关键词 laser cladding statistical model process optimization clad geometry DILUTION powder efficiency
下载PDF
Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation: process optimization and mineralogical study 被引量:2
5
作者 Rui-min Jiao Peng Xing +2 位作者 Cheng-yan Wang Bao-zhong Ma Yong-Qiang Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第9期974-982,共9页
Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. ... Currently, the majority of copper tailings are not effectively developed. Worldwide, large amounts of copper tailings generated from copper production are continuously dumped, posing a potential environmental threat. Herein, the recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation was conducted; process optimization was carried out, and the corresponding mineralogy was investigated. The reduction time, reduction temperature, reducing agent (coal), calcium chloride additive, grinding time, and magnetic field intensity were examined for process optimization. Mineralogical analyses of the sample, reduced pellets, and magnetic concentrate under various conditions were performed by X-ray diffraction, optical microscopy, and scanning electron microscopy-energy-dispersive X-ray spectrometry to elucidate the iron reduction and growth mechanisms. The results indicated that the optimum parameters of iron recovery include a reduction temperature of 1150A degrees C, a reduction time of 120 min, a coal dosage of 25%, a calcium chloride dosage of 2.5%, a magnetic field intensity of 100 mT, and a grinding time of 1 min. Under these conditions, the iron grade in the magnetic concentrate was greater than 90%, with an iron recovery ratio greater than 95%. 展开更多
关键词 copper tailings IRON direct reduction magnetic separation RECOVERY process optimization
下载PDF
Process Optimization for AZ91 Mg-alloy Low-pressure EPC Process 被引量:2
6
作者 吴和保 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第2期42-44,共3页
The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pr... The influence of a key process variable on the mold filling characteristics of AZ91 Mg-alloy was studied in the low pressure EPC process.The applied flow quantity of insert gas from 1 to 5 m~3/h associated with the pressurizing rate in the low pressure EPC casting process was considered for rectangle and L-shape plate casting. The experimental results show that there is an optimal flow quantity of insert gas for good mold filling characteristics in AZ91 Mg-alloy low-pressure EPC process. The optimal flow quantity of insert gas for the specimens is 3 to 4 m~3/h. Either less or higher than the optimal flow quantity of insert gas would lead to misrun defects or folds, blisters and porosity defects. The practice of hub casting confirmed that the low-pressure EPC process with an optimal processing variable exemplified as 4 m~3/h gas flow quantity was capable of producing complicated magnesium castings without misrun defects. 展开更多
关键词 magnesium alloy low-pressure casting expandable pattern casting process optimization
下载PDF
MICROSTRVCTURE SIMULATION AND PROCESS OPTIMIZATION OF TURBINE BLADE CASTINGS 被引量:2
7
作者 D.Z.Li Z.Y.Hu +1 位作者 Q.Li Y.Y.Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第5期383-390,共8页
The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechani... The probabilistic modeling is applied to calculate microstructural features of the thin complex smprolloy turbine blades cast by the vacuum investment process. The random distribution, orientation and physical mechanism of the nucleation, the growth kinetics of dendrites and the columnar-to-equiaxed transition (CET) are considered.Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been involved quantitatively. The validity of the modeling is confirmed by selection of the optimum process variables. 展开更多
关键词 Probabilistic modeling MICROSTRUCTURE process optimization
下载PDF
Heat treatment process optimization for face gears based on deformation and residual stress control 被引量:1
8
作者 王延忠 兰州 +2 位作者 HOU Liang-wei ZHAO Hong-pu ZHONG Yang 《Journal of Chongqing University》 CAS 2015年第1期9-18,共10页
In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gears is proposed according to the structural characteristics of the f... In this paper, based on the principle of heat transfer and thermal elastic-plastic theory, the heat treatment process optimization scheme for face gears is proposed according to the structural characteristics of the face gear and material properties of 12Cr2Ni4 steel. To simulate the effect of carburizing and quenching process on tooth deformation and residual stress distribution, a heat treatment analysis model of face gears is established, and the microstructure, stress and deformation of face gear teeth changing with time are analyzed. The simulation results show that face gear tooth hardness increases, tooth surface residual compressive stress increases and tooth deformation decreases after heat treatment process optimization. It is beneficial to improving the fatigue strength and performance of face gears. 展开更多
关键词 face gear carburizing and quenching DEFORMATION residual stress process optimization
下载PDF
Process Optimization of RTS Technology for Ultra-Low Sulfur Diesel 被引量:1
9
作者 Ge Panzhu Ding Shi +3 位作者 Xi Yuanbing Zhang Le Nie Hong Li Dadong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期104-111,共8页
The RTS technology can produce ultra-low sulfur diesel at lower costs using available hydrogenation catalyst and device.However,with the increase of the mixing proportion of secondary processed diesel fuel in the feed... The RTS technology can produce ultra-low sulfur diesel at lower costs using available hydrogenation catalyst and device.However,with the increase of the mixing proportion of secondary processed diesel fuel in the feed,the content of nitrogen compounds and polycyclic aromatic hydrocarbons in the feed increased,leading to the acceleration of the deactivation rate of the primary catalyst and the shortening of the service cycle.In order to fully understand the reason of catalyst deactivation,the effect of mixing secondary processed diesel fuel oil on the operating stability of the catalyst in the first reactor was investigated in a medium-sized fixed-bed hydrogenation unit.The results showed that the nitrogen compounds mainly affected the initial activity of the catalyst,but had little effect on the stability of the catalyst.The PAHs had little effect on the initial activity of the catalyst,but could significantly accelerate the deactivation of the catalyst.Combined with the analysis of the reason of catalyst deactivation and the study of RTS technology,the direction of RTS technology process optimization was put forward,and the stability of catalyst was improved obviously after process optimization. 展开更多
关键词 RTS technology nitrogen compound polycyclic aromatic hydrocarbons catalyst deactivation process optimization
下载PDF
Process Optimization of Vacuum Fried Rice-Straw Mushroom (Volvariella Volvacea) Stem Chip Making 被引量:1
10
作者 Subarea Suryatman Adil Basuki Ahza 《Journal of Food Science and Engineering》 2016年第3期109-120,共12页
The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around th... The study was aimed to obtain the optimum conditions for vacuum frying and predicting the moisture lost during rice straw mushrooms stem chip production. The raw materials were obtained from the local farmer around the campus. A completely randomized factorial experimental design and Duncan's multiple range tests were used to achieve the objectives. Three temperatures, i.e. 80, 90 and 100 ℃ and five frying time, i.e. 3, 6, 9, and 15 minutes with a 2 mm slice thickness were studied to determine the optimum condition and predict the moisture decrease. Results showed that the vacuum frying time in general affects the chips color and oil uptake significantly (p 〈 0.01) and correlated with the moisture decrease. The chips moisture content decline significantly after vacuum frying at 90 ℃ and 100 ℃ for 3 minutes. While for the 80 ℃ vacuum frying, the significant decrease of moisture occurred due to the increase of vacuum frying time from 3 to 6 minutes (p 〈 0.01). The optimum conditions for a 2 mm slice thickness chips making are vacuum frying at 100 ℃ for 3 minutes. The chips moisture lost followed generally a two-stage of falling rate pattern during vacuum frying, and each could be well predicted by an exponential equation (R2 = 0.99). 展开更多
关键词 Fried rice straw moisture lost process optimization vacuum frying.
下载PDF
Process Optimization on Anaerobic Treatment of Citric Acid Wastewater
11
作者 CHEN Cheng-cheng ZHANG Qiang +3 位作者 PEI Zhen-hong LIU Tong-jun QI Qing-sheng WANG Jia-ning 《Chinese Food Science》 2012年第3期42-45,共4页
[Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, an... [Objective] The aim was to obtain higher COD removal rate so as to guide the process of citric acid industrial wastewater. [Method] The effects of controllable factors, acidification time, hydraulic retention time, and influent COD concentration, in-anaerobic treatment process of citric acid wastewater on COD removal rate were studied and the COD removal rate was optimized by response surface method. [Result] There was no interaction between acidification time and the other two factors. It was showed that hydraulic retention time and influent COD concentration had significant effect on COD removal rate and there was interaction between the two factors. The optimum COD removing process conditions was as follows: acidification time 1.53 h, hydraulic retention time 3.52 h and influent COD concentration 2 698 mg/L. Under the optimized conditions, the COD removal rate was 93.31% and it was much closed to the experimental result, 93.29%. [Conclusion] Using response surface method to optimize the anaerobic treatment of citric acid wastewater can result in optimized achievement. 展开更多
关键词 Citric Acid Wastewater COD removal rate Response surface methodology process optimization China
下载PDF
Design Process Optimization Based on Design Process Gene Mapping
12
作者 LI Bo TONG Shu-rong 《International Journal of Plant Engineering and Management》 2011年第3期178-185,共8页
The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzi... The idea of genetic engineering is introduced into the area of product design to improve the design efficiency. A method towards design process optimization based on the design process gene is proposed through analyzing the correlation between the design process gene and characteristics of the design process. The concept of the design process gene is analyzed and categorized into five categories that are the task specification gene, the concept design gene, the overall design gene, the detailed design gene and the processing design gene in the light of five design phases. The elements and their interactions involved in each kind of design process gene signprocess gene mapping is drawn with its structure disclosed based on its function that process gene. 展开更多
关键词 design process optimization design process gene design process gene characteristic are identified and the delocates the defective design mapping design process
下载PDF
Understanding melt pool characteristics in laser powder bed fusion:An overview of single-and multi-track melt pools for process optimization
13
作者 Jincheng Wang Rui Zhu +1 位作者 Yujing Liu Laichang Zhang 《Advanced Powder Materials》 2023年第4期73-113,共41页
Laser powder bed fusion(LPBF)has made significant progress in producing solid and porous metal parts with complex shapes and geometries.However,LPBF produced parts often have defects(e.g.,porosity,residual stress,and i... Laser powder bed fusion(LPBF)has made significant progress in producing solid and porous metal parts with complex shapes and geometries.However,LPBF produced parts often have defects(e.g.,porosity,residual stress,and incomplete melting)that hinder its large-scale industrial commercialization.The LPBF process involves complex heat transfer andfluidflow,and the melt pool is a critical component of the process.The melt pool stability is a critical factor in determining the microstructure,mechanical properties,and corrosion resistance of LPBF produced metal parts.Furthermore,optimizing process parameters for new materials and designed structures is challenging due to the complexity of the LPBF process.This requires numerous trial-and-error cycles to minimize defects and enhance properties.This review examines the behavior of the melt pool during the LPBF process,including its effects and formation mechanisms.This article summarizes the experimental results and simulations of melt pool and identifies various factors that influence its behavior,which facilitates a better understanding of the melt pool's behavior during LPBF.This review aims to highlight key aspects of the investigation of melt pool tracks and microstructural characterization,with the goal of enhancing a better understanding of the relationship between alloy powder-process-microstructure-properties in LPBF from both single-and multi-melt pool track perspectives.By identifying the challenges and opportunities in investigating single-and multi-melt pool tracks,this review could contribute to the advancement of LPBF processes,optimal process window,and quality optimization,which ultimately improves accuracy in process parameters and efficiency in qualifying alloy powders. 展开更多
关键词 Additive manufacturing Laser powder bed fusion Single track Multi track melt pool Selective laser melting process optimization Powder feedstock Simulation Temperature gradient Defect formation
下载PDF
Design and optimization of a greener sinomenine hydrochloride preparation process considering variations among different batches of the medicinal herb 被引量:1
14
作者 Dandan Ren Jiale Xie +2 位作者 Tianle Chen Haibin Qu Xingchu Gong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期77-90,共14页
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ... The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry. 展开更多
关键词 Sinomenine hydrochloride process optimization ANISOLE
下载PDF
Optimization of Hydrocracking Process for Enhanced BTX Production from Coal Tar-Derived Hydrorefined Products
15
作者 Wu Hao Wei Hongyuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期139-151,共13页
Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derive... Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX. 展开更多
关键词 coal tar HYDROCRACKING BTX process optimization economic assessment
下载PDF
Mechanism of Rosae Rugosae Flos flavonoids in the treatment of hyperlipidemia and optimization of extraction process based on network pharmacology
16
作者 Yunxiao Xia Aijinxiu Ma +1 位作者 Zihan Hou Xu Zhao 《Journal of Polyphenols》 2024年第2期65-77,共13页
This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugos... This study aims to identify a natural plant chemical with hypolipidemic effects that can be used to treat high cholesterol without adverse reactions.Through network pharmacology screening,it was found that Rosae Rugosae Flos(RF)flavonoids had potential therapeutic effects on hyperlipidemia and its mechanism of action was discussed.TCMSP and GeneCards databases were used to obtain active ingredients and disease targets.Venn diagrams were drawn to illustrate the findings.The interaction network diagram was created using Cytoscape 3.8.0 software.The PPI protein network was constructed using String.GO and KEGG enrichment analysis was performed using Metascape.The results revealed 2 active flavonoid ingredients and 60 potential targets in RF.The key targets,including CCL2,PPARG,and PPARA,were found to play a role in multiple pathways such as the AGE-RAGE signaling pathway,lipid and atherosclerosis,and cancer pathway in diabetic complications.The solvent extraction method was optimized for efficient flavonoid extraction based on network pharmacology prediction results.This was achieved through a single factor and orthogonal test,resulting in an optimum process with a reflux time of 1.5 h,a solid-liquid ratio of 1:13 g/mL,and an ethanol concentration of 50%. 展开更多
关键词 Rosae Rugosae Flos FLAVONOIDS EXTRACTION process optimization network pharmacology HYPERLIPIDEMIA
下载PDF
Optimization of extraction process for total flavonoids of Sophorae Flos for the treatment of hyperlipidemia based on network pharmacology and molecular docking
17
作者 Jiale Mao Aijinxiu Ma +1 位作者 Lingling Wang Xu Zhao 《Journal of Polyphenols》 2024年第3期117-129,共13页
This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the ... This study aimed to investigate the mechanism of action of Sophora Flos(SF)in the treatment of hyperlipidemia(HLP)using network pharmacology and molecular docking methods,and to optimize the extraction process of the predicted active components.The STRING database was used for protein interaction analysis and PPI network construction via Cytoscape 3.9.1.Pymol was employed for docking and visualization.An extensive review of SF identifi ed 6 active ingredients,297 related objectives,84 disease objectives,and 57 total objectives.After protein interaction and topology analysis,18 core targets were identified.These included 146 gene function entries(P<0.05).Active compounds,mainly flavonoids,can modulate the expression of various proteins such as TNF,IL-6,IL-1β,PPARG,and TGFB1 to achieve therapeutic effects on HLP.The network pharmacology and molecular docking results suggested that the active fl avonoids component in SF may be related to the treatment of hyperlipidemia.Therefore,the orthogonal experiment method was used to optimize the extraction process of total fl avonoid from SF using ethanol refl ux extraction,based on a single factor experiment.The effects of refl ux time,solid-liquid ratio,ethanol concentration,and other factors on the extraction of total fl avonoid from SF were investigated.The optimum process conditions were refl ux time of 1.25 h,solid-liquid ratio of 1:15 g/mL and ethanol concentration of 60%.Using these conditions,the purity of total fl avonoid extracted from SF was 70.33±0.22%. 展开更多
关键词 Sophorae Flos total flavonoid process optimization network pharmacology HYPERLIPIDEMIA
下载PDF
Optimization and Characterization of Combined Degumming Process of Typha angustata L. Stem Fibers
18
作者 Sana Rezig Foued Khoffi +2 位作者 Mounir Jaouadi Asma Eloudiani Slah Msahli 《Journal of Renewable Materials》 EI CAS 2024年第6期1071-1086,共16页
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to... Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%). 展开更多
关键词 Typha angustata L.stems fibers combined treatment optimization process desirability function chemical and physical properties morphological structure
下载PDF
Optimization of the Pretreatment of the Mixture of Cassava Peelings and Pineapple Fibers Using Response Surface Methodology and a Process Simulator for the Bioethanol Production
19
作者 Paul Nestor Djomou Djonga George Elambo Nkeng +2 位作者 Madjoyogo Hervé Sirma Ahmat Tom Thierry Tchamba Tchuidjang 《Energy and Power Engineering》 2024年第2期79-96,共18页
The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ... The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure. 展开更多
关键词 BIOETHANOL Cassava Peeling Pineapple Fibers Organosolv process and optimization
下载PDF
Modeling, Simulation and Optimization of a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus Platform 被引量:14
20
作者 侯卫锋 苏宏业 +1 位作者 胡永有 褚健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期584-591,共8页
A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-... A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result. 展开更多
关键词 catalytic reforming kinetic model Aspen plus computer simulation process optimization
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部