Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have ...Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.展开更多
Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinem...Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications.展开更多
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri...A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.展开更多
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual...The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people.展开更多
The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials develop...The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.展开更多
In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without ...In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.展开更多
Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions a...Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.展开更多
In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-...In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.展开更多
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr...Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.展开更多
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing...Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.展开更多
The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent re...The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent refinement to 1−2μm,with a distinct basal texture emerging in the stir zone(SZ).Additionally,second-phase particles were fragmented,dispersed,and partially dissolved.Multi-pass FSP(M-FSP)further enhanced the homogeneity of the microstructure,reduced texture intensity differences,and decreased the fraction of second-phase particles by 50%.Both S-FSP and M-FSP SZs demonstrated superplasticity at strain rates below 1×10^(−3)s^(−1)and at temperatures of 250−350℃.The S-FSP SZ exhibited an elongation of 390%at 250℃and 1×10^(−4)s^(−1),while the M-FSP SZ achieved an elongation of 406%at 350℃and 1×10^(−3)s^(−1).The superplastic deformation of SZ was co-dominated by grain boundary sliding(GBS)and the solute-drag mechanism in S-FSP and mainly by GBS in M-FSP.展开更多
Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In exist...Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.展开更多
The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial...The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.展开更多
The degree of processing is rarely considered an independent factor in the health effects of fruit juices and beverages(FJBs)consumption.In fact,the consumption of ultra-processed foods has been shown to pose health r...The degree of processing is rarely considered an independent factor in the health effects of fruit juices and beverages(FJBs)consumption.In fact,the consumption of ultra-processed foods has been shown to pose health risks.In this study,we first integrated 4 systems used to classify the degree of food processing and then classified FJBs into three major categories,low(minimal),moderate and high.Second,we compared the differences in attitudes towards FJBs in dietary guidelines.Third,we integrated the results of existing epidemiological surveys,randomized controlled trials,and animal experiments to explore the health risks associated with consuming FJBs.Deepening the processing of FJBs has been found to lead to an increased risk of diseases.Dietary pattern,nutrients,addition agents and consumer preferences may be influential factors.Finally,we investigated whether there were any changes in the health benefits of 100%fruit juices produced by different processing methods.In conclusion,minimally/moderately processed 100%fruit juices provide more health benefits than highly processed fruit beverages.The results support the need to consider the extent of FJBs processing in future studies to adjust official nutritional recommendations for beverage consumption.展开更多
The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is a...The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.展开更多
Constructing the magnesium alloy with fine grains,low density of dislocations,and weak crystal orientation is of crucial importance to enhance its comprehensive performance as the anode for Mg-air battery.However,this...Constructing the magnesium alloy with fine grains,low density of dislocations,and weak crystal orientation is of crucial importance to enhance its comprehensive performance as the anode for Mg-air battery.However,this unique microstructure can hardly be achieved with conventional plastic deformation such as rolling or extrusion.Herein,we tailor the microstructure of Mg-Al-Sn-RE alloy by using the friction stir processing,which obviously refines the grains without increasing dislocation density or strengthening crystal orientation.The Mg-air battery with the processed Mg-Al-Sn-RE alloy as the anode exhibits higher discharge voltages and capacities than that employing the untreated anode.Furthermore,the impact of friction stir processing on the electrochemical discharge behaviour of Mg-Al-Sn-RE anode and the corresponding mechanism are also analysed according to microstructure characterization and electrochemical response.展开更多
SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study...SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study,the role of SIL1 in APP processing was explored both in vitro and in vivo.In the in vitro experiment,SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695.In the in vivo experiment,AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates.Western blotting(WB),immunohistochemistry,RNA sequencing(RNA-seq),and behavioral experiments were performed to evaluate the relevant parameters.Results indicated that SIL1 expression decreased in APP23/PS45 mice.Overexpression of SIL1 significantly decreased the protein levels of APP,presenilin-1(PS1),and C-terminal fragments(CTFs)of APP in vivo and in vitro.Conversely,knockdown of SIL1 increased the protein levels of APP,β-site APP cleavage enzyme 1(BACE1),PS1,and CTFs,as well as APP mRNA expression in 2EB2 cells.Furthermore,SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice.Importantly,Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice.These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.展开更多
Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous...Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal,satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-per-formance reception.Firstly,this paper analyzes the key issues of burst communication for traffic signals in beam hopping sys-tems,and then compares and studies typical carrier synchro-nization algorithms for burst signals.Secondly,combining the requirements of beam-hopping communication systems for effi-cient burst and low signal-to-noise ratio reception of downlink signals in forward links,a decoding assisted bidirectional vari-able parameter iterative carrier synchronization technique is pro-posed,which introduces the idea of iterative processing into car-rier synchronization.Aiming at the technical characteristics of communication signal carrier synchronization,a new technical approach of bidirectional variable parameter iteration is adopted,breaking through the traditional understanding that loop struc-tures cannot adapt to low signal-to-noise ratio burst demodula-tion.Finally,combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems,the research and performance simulation are con-ducted.The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals,achieve fast synchronization of low signal-to-noise ratio burst signals,and have the unique advantage of flexible and adjustable parameters.展开更多
基金supported by the State Key Laboratory of Natural Gas Hydrate(No.2022-KFJJ-SHW)the National Natural Science Foundation of China(No.42376058)+2 种基金the International Science&Technology Cooperation Program of China(No.2023YFE0119900)the Hainan Province Key Research and Development Project(No.ZDYF2024GXJS002)the Research Start-Up Funds of Zhufeng Scholars Program.
文摘Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin.
基金supported by the University Malaya(Grant code:FRGS/1/2022/TK10/UM/02/6)the National Natural Science Foundation of China(Grant No.51275414,No.51605387)Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number RGP.2/303/44。
文摘Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications.
基金supported by the National Key Research and Development Program of China(2021YFB3501002)State Key Program of National Natural Science Foundation of China(5203405)+3 种基金National Natural Science Foundation of China(51974220,52104383)National Key Research and Development Program of China(2021YFB3700902)Key Research and Development Program of Shaanxi Province(2020ZDLGY13-06,2017ZDXM-GY-037)Shaanxi Province National Science Fund for Distinguished Young Scholars(2022JC-24)。
文摘A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate.
基金supported by China Agriculture Research System of MOF and MARA(CARS-41)Wens Fifth Five R&D Major Project(WENS-2020-1-ZDZX-007)。
文摘The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515010875)Guangdong Basic and Applied Basic Research Foundation(2021A1515110017)+10 种基金Natural Science Foundation of Top Talent of SZTU(grant no.20200205)Project of Education Commission of Guangdong Province of China(2021KQNCX080)Research on the electrochemical reaction mechanism of the anode of mediumlow temperature direct ammonia SOFCs(20231063020006)the project of al solid-state high energy density energy storage system(20221063010031)the project of Shenzhen Overseas Talent upon Industrialization of 1kw stack for direct ammonia SOFCs(20221061010002)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011673)Education Department of Guangdong Province(No.2021KCXTD045)National Natural Science Foundation of China(No.12274303)the support from the Fundamental Research Funds for the Central Universities(2232023A-01)NSFC No.52103202beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF)for the synchrotron experiment
文摘The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.
文摘In order to attain good quality transfer function estimates from magnetotelluric field data(i.e.,smooth behavior and small uncertainties across all frequencies),we compare time series data processing with and without a multitaper approach for spectral estimation.There are several common ways to increase the reliability of the Fourier spectral estimation from experimental(noisy)data;for example to subdivide the experimental time series into segments,taper these segments(using single taper),perform the Fourier transform of the individual segments,and average the resulting spectra.
基金the Ministry of Higher Education,Malaysia for financial support via the Transdisciplinary Research Grant Scheme Project(Grant No.TRGS/1/2020/UPM/02/7)。
文摘Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.
基金the China Scholarship Council for the award of fellowship and funding(No.202006230137)。
文摘In order to obtain Mg alloys with fine microstructures and high mechanical performances,a novel friction-based processing method,name as“constrained friction processing(CFP)”,was investigated.Via CFP,defect-free Mg-Zn-Ca rods with greatly refined grains and high mechanical properties were produced.Compared to the previous as-cast microstructure,the grain size was reduced from more than 1 mm to around 4μm within 3 s by a single process cycle.The compressive yield strength was increased by 350%while the ultimate compressive strength by 53%.According to the established material flow behaviors by“tracer material”,the plastic material was transported by shear deformation.From the base material to the rod,the material experienced three stages,i.e.deformation by the tool,upward flow with additional tilt,followed by upward transportation.The microstructural evolution was revealed by“stop-action”technique.The microstructural development at regions adjacent to the rod is mainly controlled by twinning,dynamic recrystallization(DRX)as well as particle stimulated nucleation,while that within the rod is related to DRX combined with grain growth.
基金financial supports from the National Natural Science Foundation of China(52130104,51821001)High Technology and Key Development Project of Ningbo,China(2019B10102)。
文摘Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.
文摘Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field.
基金supported by Hebei Natural Science Foundation,China (No.E2020203158)Hebei Provincial Department of Human Resources and Social Security,China (No.E2020100006)。
文摘The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent refinement to 1−2μm,with a distinct basal texture emerging in the stir zone(SZ).Additionally,second-phase particles were fragmented,dispersed,and partially dissolved.Multi-pass FSP(M-FSP)further enhanced the homogeneity of the microstructure,reduced texture intensity differences,and decreased the fraction of second-phase particles by 50%.Both S-FSP and M-FSP SZs demonstrated superplasticity at strain rates below 1×10^(−3)s^(−1)and at temperatures of 250−350℃.The S-FSP SZ exhibited an elongation of 390%at 250℃and 1×10^(−4)s^(−1),while the M-FSP SZ achieved an elongation of 406%at 350℃and 1×10^(−3)s^(−1).The superplastic deformation of SZ was co-dominated by grain boundary sliding(GBS)and the solute-drag mechanism in S-FSP and mainly by GBS in M-FSP.
基金supported by National Natural Sciences Foundation of China(No.62271165,62027802,62201307)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030297)+2 种基金the Shenzhen Science and Technology Program ZDSYS20210623091808025Stable Support Plan Program GXWD20231129102638002the Major Key Project of PCL(No.PCL2024A01)。
文摘Due to the restricted satellite payloads in LEO mega-constellation networks(LMCNs),remote sensing image analysis,online learning and other big data services desirably need onboard distributed processing(OBDP).In existing technologies,the efficiency of big data applications(BDAs)in distributed systems hinges on the stable-state and low-latency links between worker nodes.However,LMCNs with high-dynamic nodes and long-distance links can not provide the above conditions,which makes the performance of OBDP hard to be intuitively measured.To bridge this gap,a multidimensional simulation platform is indispensable that can simulate the network environment of LMCNs and put BDAs in it for performance testing.Using STK's APIs and parallel computing framework,we achieve real-time simulation for thousands of satellite nodes,which are mapped as application nodes through software defined network(SDN)and container technologies.We elaborate the architecture and mechanism of the simulation platform,and take the Starlink and Hadoop as realistic examples for simulations.The results indicate that LMCNs have dynamic end-to-end latency which fluctuates periodically with the constellation movement.Compared to ground data center networks(GDCNs),LMCNs deteriorate the computing and storage job throughput,which can be alleviated by the utilization of erasure codes and data flow scheduling of worker nodes.
基金supported by China Southern Power Grid Technology Project under Grant 03600KK52220019(GDKJXM20220253).
文摘The convergence of Internet of Things(IoT),5G,and cloud collaboration offers tailored solutions to the rigorous demands of multi-flow integrated energy aggregation dispatch data processing.While generative adversarial networks(GANs)are instrumental in resource scheduling,their application in this domain is impeded by challenges such as convergence speed,inferior optimality searching capability,and the inability to learn from failed decision making feedbacks.Therefore,a cloud-edge collaborative federated GAN-based communication and computing resource scheduling algorithm with long-term constraint violation sensitiveness is proposed to address these challenges.The proposed algorithm facilitates real-time,energy-efficient data processing by optimizing transmission power control,data migration,and computing resource allocation.It employs federated learning for global parameter aggregation to enhance GAN parameter updating and dynamically adjusts GAN learning rates and global aggregation weights based on energy consumption constraint violations.Simulation results indicate that the proposed algorithm effectively reduces data processing latency,energy consumption,and convergence time.
基金funded by the National Natural Science Foundation Program of China(31901707)the 2115 Talent Development Program of China Agricultural University。
文摘The degree of processing is rarely considered an independent factor in the health effects of fruit juices and beverages(FJBs)consumption.In fact,the consumption of ultra-processed foods has been shown to pose health risks.In this study,we first integrated 4 systems used to classify the degree of food processing and then classified FJBs into three major categories,low(minimal),moderate and high.Second,we compared the differences in attitudes towards FJBs in dietary guidelines.Third,we integrated the results of existing epidemiological surveys,randomized controlled trials,and animal experiments to explore the health risks associated with consuming FJBs.Deepening the processing of FJBs has been found to lead to an increased risk of diseases.Dietary pattern,nutrients,addition agents and consumer preferences may be influential factors.Finally,we investigated whether there were any changes in the health benefits of 100%fruit juices produced by different processing methods.In conclusion,minimally/moderately processed 100%fruit juices provide more health benefits than highly processed fruit beverages.The results support the need to consider the extent of FJBs processing in future studies to adjust official nutritional recommendations for beverage consumption.
基金supported by the National Science Foundation of China(10972015,11172015)the Beijing Natural Science Foundation(8162008).
文摘The mechanical properties and failure mechanism of lightweight aggregate concrete(LWAC)is a hot topic in the engineering field,and the relationship between its microstructure and macroscopic mechanical properties is also a frontier research topic in the academic field.In this study,the image processing technology is used to establish a micro-structure model of lightweight aggregate concrete.Through the information extraction and processing of the section image of actual light aggregate concrete specimens,the mesostructural model of light aggregate concrete with real aggregate characteristics is established.The numerical simulation of uniaxial tensile test,uniaxial compression test and three-point bending test of lightweight aggregate concrete are carried out using a new finite element method-the base force element method respectively.Firstly,the image processing technology is used to produce beam specimens,uniaxial compression specimens and uniaxial tensile specimens of light aggregate concrete,which can better simulate the aggregate shape and random distribution of real light aggregate concrete.Secondly,the three-point bending test is numerically simulated.Thirdly,the uniaxial compression specimen generated by image processing technology is numerically simulated.Fourth,the uniaxial tensile specimen generated by image processing technology is numerically simulated.The mechanical behavior and damage mode of the specimen during loading were analyzed.The results of numerical simulation are compared and analyzed with those of relevant experiments.The feasibility and correctness of the micromodel established in this study for analyzing the micromechanics of lightweight aggregate concrete materials are verified.Image processing technology has a broad application prospect in the field of concrete mesoscopic damage analysis.
基金The Authors acknowledge the financial support of the National Nature Science Foundation of China(No.52171067)the Natural Science Foundation of Guangdong Province of China(No.2022A1515012366).
文摘Constructing the magnesium alloy with fine grains,low density of dislocations,and weak crystal orientation is of crucial importance to enhance its comprehensive performance as the anode for Mg-air battery.However,this unique microstructure can hardly be achieved with conventional plastic deformation such as rolling or extrusion.Herein,we tailor the microstructure of Mg-Al-Sn-RE alloy by using the friction stir processing,which obviously refines the grains without increasing dislocation density or strengthening crystal orientation.The Mg-air battery with the processed Mg-Al-Sn-RE alloy as the anode exhibits higher discharge voltages and capacities than that employing the untreated anode.Furthermore,the impact of friction stir processing on the electrochemical discharge behaviour of Mg-Al-Sn-RE anode and the corresponding mechanism are also analysed according to microstructure characterization and electrochemical response.
基金National Natural Science Foundation of China(82230043,82293642)。
文摘SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study,the role of SIL1 in APP processing was explored both in vitro and in vivo.In the in vitro experiment,SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695.In the in vivo experiment,AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates.Western blotting(WB),immunohistochemistry,RNA sequencing(RNA-seq),and behavioral experiments were performed to evaluate the relevant parameters.Results indicated that SIL1 expression decreased in APP23/PS45 mice.Overexpression of SIL1 significantly decreased the protein levels of APP,presenilin-1(PS1),and C-terminal fragments(CTFs)of APP in vivo and in vitro.Conversely,knockdown of SIL1 increased the protein levels of APP,β-site APP cleavage enzyme 1(BACE1),PS1,and CTFs,as well as APP mRNA expression in 2EB2 cells.Furthermore,SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice.Importantly,Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice.These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.
基金This work was supported by the Key Research and Development Program of Shaanxi(2022ZDLGY05-08)the Application Innovation Program of CASC(China Aerospace Science and Technology Corporation)(6230107001)+2 种基金the Research Project on Civil Aerospace Technology(D040304)the Research Project of CAST(Y23-WYHXJS-07)the Research Foundation of the Key Laboratory of Spaceborne Information Intelligent Interpretation(2022-ZZKY-JJ-20-01).
文摘Beam-hopping technology has become one of the major research hotspots for satellite communication in order to enhance their communication capacity and flexibility.However,beam hopping causes the traditional continuous time-division multiplexing signal in the forward downlink to become a burst signal,satellite terminal receivers need to solve multiple key issues such as burst signal rapid synchronization and high-per-formance reception.Firstly,this paper analyzes the key issues of burst communication for traffic signals in beam hopping sys-tems,and then compares and studies typical carrier synchro-nization algorithms for burst signals.Secondly,combining the requirements of beam-hopping communication systems for effi-cient burst and low signal-to-noise ratio reception of downlink signals in forward links,a decoding assisted bidirectional vari-able parameter iterative carrier synchronization technique is pro-posed,which introduces the idea of iterative processing into car-rier synchronization.Aiming at the technical characteristics of communication signal carrier synchronization,a new technical approach of bidirectional variable parameter iteration is adopted,breaking through the traditional understanding that loop struc-tures cannot adapt to low signal-to-noise ratio burst demodula-tion.Finally,combining the DVB-S2X standard physical layer frame format used in high throughput satellite communication systems,the research and performance simulation are con-ducted.The results show that the new technology proposed in this paper can significantly shorten the carrier synchronization time of burst signals,achieve fast synchronization of low signal-to-noise ratio burst signals,and have the unique advantage of flexible and adjustable parameters.