期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Glacier area change (1993-2019) and its relationship to debris cover, proglacial lakes, and morphological parameters in the Chandra-Bhaga Basin, Western Himalaya, India
1
作者 VATSAL Sarvagya AZAM Mohd Farooq +5 位作者 BHARDWAJ Anshuman MANDAL Arindan BAHUGUNA Ishmohan RAMANATHAN Alagappan RAJU N.Janardhana TOMAR Sangita Singh 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1287-1306,共20页
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years... Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin. 展开更多
关键词 GLACIER Area change Debris cover MORPHOLOGY proglacial lake
下载PDF
Flooding(or breaching)of inter-connected proglacial lakes by cascading overflow in the arid region of Western Mongolia(Mt.Tsambagarav,Mongolian Altai)
2
作者 Otgonbayar DEMBEREL Chinmay DASH +6 位作者 Battsetseg DUGERSUREN Munkhbat BAYARMAA Yeong Bae SEONG Elora CHAKRABORTY Batsuren DORJSUREN Atul SINGH Nemekhbayar GANHUYAG 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3215-3233,共19页
This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 yea... This study investigates the glacial lake outburst flood(GLOF)hazards in the Tsambagarav mountain range in Western Mongolia,focusing on the Khukhnuruu Valley and its interconnected proglacial lakes.Over the last 30 years,significant glacier retreats,driven by rising temperatures and changing precipitation patterns,have led to the formation and expansion of several proglacial lakes.Fieldwork combined with satellite data and meteorological analysis was used to assess the dynamics of glacier and lake area changes,with particular focus on the flood events of July 2021.The research reveals a substantial reduction in glacier area,particularly in the Khukhnuruu E complex,where glacier area decreased by 19.3%.The study highlights the influence of increasing temperatures and summer precipitation,which have accelerated ice melt,contributing to the expansion and eventual breaching of lakes.Additionally,lake area changes were influenced by the steepness of the terrain,with steeper slopes exacerbating peak discharge during floods.Of the studied seven lakes(Lake 1 to Lake 7),Lake 1 experienced the most dramatic reduction,with a decrease in area by 73.51%and volume by 84.84%,followed by Lake 7.This study underscores the region's vulnerability to climate-induced hazards and stresses the need for a comprehensive early warning system and disaster preparedness measures to mitigate future risks. 展开更多
关键词 Glacial lake outburst flood(GLOF) Mongolian Altai Climate change proglacial lakes
下载PDF
Textural and Geochemical Characteristics of Proglacial Sediments: A Case Study in the Foreland of the Nelson Ice Cap, Antarctica 被引量:8
3
作者 LIUXiaodong SUNLiguang YINXuebin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第4期970-981,共12页
This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sedim... This paper presents a detailed study on the textural and geochemical characteristics of the proglacial sediments near the edge of modern Nelson Ice Cap, Antarctica. The grain size distributions of the proglacial sediments are characteristic of glacigenic deposits, but very different from those of aeolian and lacustrine sediments. Moreover, the grain size distributions of the proglacial sediments are fractal with a dimension of about 2.9, and the fractal dimensions can be used as another summary statistical parameter for quantifying the relative amounts of coarse and fine materials. Correlations between the absolute element abundances of the proglacial sediments are very weak due to mineral partitioning and other effects of glacial processes, but correlations between the element/Rb ratios are statistically significant. This finding indicates that element/Rb ratios can be used to reduce or eliminate the effects of glacial processes, evaluate geochemical data and determine the sediment provenance in the foreland of Antarctic glacier. Comparisons on the element concentrations among different environments suggest that the proglacial sediments are derived predominantly from local bedrocks and appear to be natural in origin. Thus these natural sediments can be used to study chemical weathering in the proglacial foreland of modern glacier. 展开更多
关键词 proglacial sediment grain size fractal dimension element abundance chemical weathering
下载PDF
Long-term records of glacier evolution and associated proglacial lakes on the Tibetan Plateau(1976‒2020) 被引量:3
4
作者 Drolma Lhakpa Yubao Qiu +3 位作者 Pa Lhak Lijuan Shi Maoce Cheng Bin Cheng 《Big Earth Data》 EI 2022年第4期435-452,共18页
The glaciers on the Tibetan Plateau(TP)constitute critical sources of water for the proglacial lakes and many rivers found downstream.To better understand the evolution of glaciers and the impact of this on proglacial... The glaciers on the Tibetan Plateau(TP)constitute critical sources of water for the proglacial lakes and many rivers found downstream.To better understand the evolution of glaciers and the impact of this on proglacial lakes,seven glaciers corresponding to continenṅtal,sub-continental,and marine climate types that are influenced by wester-lies and the Indian summer monsoon were selected for study.The evolution of the edges of these glaciers and their associated progla-cial lakes were identified based on the visual interpretation of Landsat TM/ETM+/OLI images.A dataset covering the period 1976-2020 that included the glacier and proglacial lake edge vectors was then created.The relative errors in the areas of the individual glaciers were less than 3%,and for the proglacial lakes these errors were in the range 0%-7%.The dataset was used to effectively compare the changes in glaciers and proglacial lakes that have occurred over the past four decades.The most striking changes that were found were the retreat of glaciers and the formation of small proglacial lakes.This dataset could also be used as a proxy to support research on changes in mountain glaciers,particularly their response to climate change and water resources.This response is of great scientific significance and is important in many applications,including assessments of the ecological problems caused by melting glaciers.The dataset can be downloaded from http://doi.org/10.57760/sciencedb.j00076.00131. 展开更多
关键词 Glacier and proglacial lake long-term changes LANDSAT Tibetan Plateau
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部